Search results for: robust artificial neural networks architectures.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3512

Search results for: robust artificial neural networks architectures.

3002 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500

Authors: Mustafa Elfituri, Jonathan Cook

Abstract:

Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.

Keywords: Graph computation, Graph500 benchmark, parallel architectures, parallel programming, workload characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 532
3001 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: Artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
3000 Survey of Communication Technologies for IoT Deployments in Developing Regions

Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen

Abstract:

The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them based on a couple of related works. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs) are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The current challenges of various architectures are discussed in detail, with the major issue identified as obstruction of communication paths by buildings, trees, hills, etc.

Keywords: Communication technologies, environmental monitoring, Internet of Things, IoT, IoT deployment challenges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 368
2999 Connectionist Approach to Generic Text Summarization

Authors: Rajesh S.Prasad, U. V. Kulkarni, Jayashree.R.Prasad

Abstract:

As the enormous amount of on-line text grows on the World-Wide Web, the development of methods for automatically summarizing this text becomes more important. The primary goal of this research is to create an efficient tool that is able to summarize large documents automatically. We propose an Evolving connectionist System that is adaptive, incremental learning and knowledge representation system that evolves its structure and functionality. In this paper, we propose a novel approach for Part of Speech disambiguation using a recurrent neural network, a paradigm capable of dealing with sequential data. We observed that connectionist approach to text summarization has a natural way of learning grammatical structures through experience. Experimental results show that our approach achieves acceptable performance.

Keywords: Artificial Neural Networks (ANN); Computational Intelligence (CI); Connectionist Text Summarizer ECTS (ECTS); Evolving Connectionist systems; Evolving systems; Fuzzy systems (FS); Part of Speech (POS) disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
2998 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity

Authors: Ali Keshavarzi, Fereydoon Sarmadian

Abstract:

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.

Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
2997 Artificial Neural Network based Parameter Estimation and Design Optimization of Loop Antenna

Authors: Kumaresh Sarmah, Kandarpa Kumar Sarma

Abstract:

Artificial Neural Network (ANN)s are best suited for prediction and optimization problems. Trained ANNs have found wide spread acceptance in several antenna design systems. Four parameters namely antenna radiation resistance, loss resistance, efficiency, and inductance can be used to design an antenna layout though there are several other parameters available. An ANN can be trained to provide the best and worst case precisions of an antenna design problem defined by these four parameters. This work describes the use of an ANN to generate the four mentioned parameters for a loop antenna for the specified frequency range. It also provides insights to the prediction of best and worst-case design problems observed in applications and thereby formulate a model for physical layout design of a loop antenna.

Keywords: MLP, ANN, parameter, prediction, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
2996 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
2995 Pose Normalization Network for Object Classification

Authors: Bingquan Shen

Abstract:

Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.

Keywords: Convolutional neural networks, object classification, pose normalization, viewpoint invariant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108
2994 Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences

Authors: U. Bottigli, R.Chiarucci, B. Golosio, G.L. Masala, P. Oliva, S.Stumbo, D.Cascio, F. Fauci, M. Glorioso, M. Iacomi, R. Magro, G. Raso

Abstract:

Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.

Keywords: Neural Networks, K-Nearest Neighbours, Support Vector Machine, Computer Aided Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
2993 Power System Voltage Control using LP and Artificial Neural Network

Authors: A. Sina, A. Aeenmehr, H. Mohamadian

Abstract:

Optimization and control of reactive power distribution in the power systems leads to the better operation of the reactive power resources. Reactive power control reduces considerably the power losses and effective loads and improves the power factor of the power systems. Another important reason of the reactive power control is improving the voltage profile of the power system. In this paper, voltage and reactive power control using Neural Network techniques have been applied to the 33 shines- Tehran Electric Company. In this suggested ANN, the voltages of PQ shines have been considered as the input of the ANN. Also, the generators voltages, tap transformers and shunt compensators have been considered as the output of ANN. Results of this techniques have been compared with the Linear Programming. Minimization of the transmission line power losses has been considered as the objective function of the linear programming technique. The comparison of the results of the ANN technique with the LP shows that the ANN technique improves the precision and reduces the computation time. ANN technique also has a simple structure and this causes to use the operator experience.

Keywords: voltage control, linear programming, artificial neural network, power systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
2992 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing

Authors: Fengxia Zheng, Shouming Zhong

Abstract:

ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.

Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672
2991 New Delay-Dependent Stability Criteria for Neural Networks With Two Additive Time-varying Delay Components

Authors: Xingyuan Qu, Shouming Zhong

Abstract:

In this paper, the problem of stability criteria of neural networks (NNs) with two-additive time-varying delay compenents is investigated. The relationship between the time-varying delay and its lower and upper bounds is taken into account when estimating the upper bound of the derivative of Lyapunov functional. As a result, some improved delay stability criteria for NNs with two-additive time-varying delay components are proposed. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

Keywords: Delay-dependent stability, time-varying delays, Lyapunov functional, linear matrix inequality (LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
2990 Existence and Global Exponential Stability of Periodic Solutions of Cellular Neural Networks with Distributed Delays and Impulses on Time Scales

Authors: Daiming Wang

Abstract:

In this paper, by using Mawhin-s continuation theorem of coincidence degree and a method based on delay differential inequality, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of cellular neural networks with distributed delays and impulses on time scales. The results of this paper generalized previously known results.

Keywords: Periodic solutions, global exponential stability, coincidence degree, M-matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
2989 Multi-Objective Optimal Threshold Selection for Similarity Functions in Siamese Networks for Semantic Textual Similarity Tasks

Authors: Kriuk Boris, Kriuk Fedor

Abstract:

This paper presents a comparative study of fundamental similarity functions for Siamese networks in semantic textual similarity (STS) tasks. We evaluate various similarity functions using the STS Benchmark dataset, analyzing their performance and stability. Additionally, we present a multi-objective approach for optimal threshold selection. Our findings provide insights into the effectiveness of different similarity functions and offer a straightforward method for threshold selection optimization, contributing to the advancement of Siamese network architectures in STS applications.

Keywords: Siamese networks, Semantic textual similarity, Similarity functions, STS Benchmark dataset, Threshold selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35
2988 Definition of Foot Size Model using Kohonen Network

Authors: Khawla Ben Abderrahim

Abstract:

In order to define a new model of Tunisian foot sizes and for building the most comfortable shoes, Tunisian industrialists must be able to offer for their customers products able to put on and adjust the majority of the target population concerned. Moreover, the use of models of shoes, mainly from others country, causes a mismatch between the foot and comfort of the Tunisian shoes. But every foot is unique; these models become uncomfortable for the Tunisian foot. We have a set of measures produced from a 3D scan of the feet of a diverse population (women, men ...) and we try to analyze this data to define a model of foot specific to the Tunisian footwear design. In this paper we propose tow new approaches to modeling a new foot sizes model. We used, indeed, the neural networks, and specially the Kohonen network. Next, we combine neural networks with the concept of half-foot size to improve the models already found. Finally, it was necessary to compare the results obtained by applying each approach and we decide what-s the best approach that give us the most model of foot improving more comfortable shoes.

Keywords: Morphology of the foot, foot size, half foot size, neural network, Kohonen network, model of foot size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
2987 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network

Authors: Marcio Leal, Marta Villamil

Abstract:

Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.

Keywords: Sign language recognition, computer vision, infrared, artificial neural network, dynamic time warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
2986 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree

Authors: S. A. Gayvoronsky, T. A. Ezangina

Abstract:

The robust control system objects with interval- undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.

Keywords: An interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
2985 Implementation of Neural Network Based Electricity Load Forecasting

Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw

Abstract:

This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.

Keywords: Neural network, Load forecast, Time series, wavelettransform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
2984 Performance Evaluation of Complex Valued Neural Networks Using Various Error Functions

Authors: Anita S. Gangal, P. K. Kalra, D. S. Chauhan

Abstract:

The backpropagation algorithm in general employs quadratic error function. In fact, most of the problems that involve minimization employ the Quadratic error function. With alternative error functions the performance of the optimization scheme can be improved. The new error functions help in suppressing the ill-effects of the outliers and have shown good performance to noise. In this paper we have tried to evaluate and compare the relative performance of complex valued neural network using different error functions. During first simulation for complex XOR gate it is observed that some error functions like Absolute error, Cauchy error function can replace Quadratic error function. In the second simulation it is observed that for some error functions the performance of the complex valued neural network depends on the architecture of the network whereas with few other error functions convergence speed of the network is independent of architecture of the neural network.

Keywords: Complex backpropagation algorithm, complex errorfunctions, complex valued neural network, split activation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
2983 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in  modeling and learning complicated and nonlinear relations has been  used to develop a model for the prediction of changes in the diameter  of bubbles in pool boiling distilled water. The input parameters used  in the development of this network include element temperature, heat  flux, and retention time of bubbles. The test data obtained from the  experiment of the pool boiling of distilled water, and the  measurement of the bubbles form on the cylindrical element. The  model was developed based on training algorithm, which is  typologically of back-propagation type. Considering the correlation  coefficient obtained from this model is 0.9633. This shows that this  model can be trusted for the simulation and modeling of the size of  bubble and thermal transfer of boiling.

Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
2982 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model

Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi

Abstract:

Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).

Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2547
2981 EZW Coding System with Artificial Neural Networks

Authors: Saudagar Abdul Khader Jilani, Syed Abdul Sattar

Abstract:

Image compression plays a vital role in today-s communication. The limitation in allocated bandwidth leads to slower communication. To exchange the rate of transmission in the limited bandwidth the Image data must be compressed before transmission. Basically there are two types of compressions, 1) LOSSY compression and 2) LOSSLESS compression. Lossy compression though gives more compression compared to lossless compression; the accuracy in retrievation is less in case of lossy compression as compared to lossless compression. JPEG, JPEG2000 image compression system follows huffman coding for image compression. JPEG 2000 coding system use wavelet transform, which decompose the image into different levels, where the coefficient in each sub band are uncorrelated from coefficient of other sub bands. Embedded Zero tree wavelet (EZW) coding exploits the multi-resolution properties of the wavelet transform to give a computationally simple algorithm with better performance compared to existing wavelet transforms. For further improvement of compression applications other coding methods were recently been suggested. An ANN base approach is one such method. Artificial Neural Network has been applied to many problems in image processing and has demonstrated their superiority over classical methods when dealing with noisy or incomplete data for image compression applications. The performance analysis of different images is proposed with an analysis of EZW coding system with Error Backpropagation algorithm. The implementation and analysis shows approximately 30% more accuracy in retrieved image compare to the existing EZW coding system.

Keywords: Accuracy, Compression, EZW, JPEG2000, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
2980 MinRoot and CMesh: Interconnection Architectures for Network-on-Chip Systems

Authors: Mohammad Ali Jabraeil Jamali, Ahmad Khademzadeh

Abstract:

The success of an electronic system in a System-on- Chip is highly dependent on the efficiency of its interconnection network, which is constructed from routers and channels (the routers move data across the channels between nodes). Since neither classical bus based nor point to point architectures can provide scalable solutions and satisfy the tight power and performance requirements of future applications, the Network-on-Chip (NoC) approach has recently been proposed as a promising solution. Indeed, in contrast to the traditional solutions, the NoC approach can provide large bandwidth with moderate area overhead. The selected topology of the components interconnects plays prime rule in the performance of NoC architecture as well as routing and switching techniques that can be used. In this paper, we present two generic NoC architectures that can be customized to the specific communication needs of an application in order to reduce the area with minimal degradation of the latency of the system. An experimental study is performed to compare these structures with basic NoC topologies represented by 2D mesh, Butterfly-Fat Tree (BFT) and SPIN. It is shown that Cluster mesh (CMesh) and MinRoot schemes achieves significant improvements in network latency and energy consumption with only negligible area overhead and complexity over existing architectures. In fact, in the case of basic NoC topologies, CMesh and MinRoot schemes provides substantial savings in area as well, because they requires fewer routers. The simulation results show that CMesh and MinRoot networks outperforms MESH, BFT and SPIN in main performance metrics.

Keywords: MinRoot, CMesh, NoC, Topology, Performance Evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
2979 Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network

Authors: Abed Sami Qawasme, Sameer Khader

Abstract:

This paper describes the effects of photovoltaic voltage changes on Multi-level inverter (MLI) due to solar irradiation variations, and methods to overcome these changes. The irradiation variation affects the generated voltage, which in turn varies the switching angles required to turn-on the inverter power switches in order to obtain minimum harmonic content in the output voltage profile. Genetic Algorithm (GA) is used to solve harmonics elimination equations of eleven level inverters with equal and non-equal dc sources. After that artificial neural network (ANN) algorithm is proposed to generate appropriate set of switching angles for MLI at any level of input dc sources voltage causing minimization of the total harmonic distortion (THD) to an acceptable limit. MATLAB/Simulink platform is used as a simulation tool and Fast Fourier Transform (FFT) analyses are carried out for output voltage profile to verify the reliability and accuracy of the applied technique for controlling the MLI harmonic distortion. According to the simulation results, the obtained THD for equal dc source is 9.38%, while for variable or unequal dc sources it varies between 10.26% and 12.93% as the input dc voltage varies between 4.47V nd 11.43V respectively. The proposed ANN algorithm provides satisfied simulation results that match with results obtained by alternative algorithms.

Keywords: Multi level inverter, genetic algorithm, artificial neural network, total harmonic distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
2978 Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Authors: Fereydoon Sarmadian, Ali Keshavarzi

Abstract:

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.

Keywords: Artificial neural network, Field capacity, Permanentwilting point, Pedotransfer functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
2977 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network

Authors: K. Atashgar

Abstract:

When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.

Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
2976 ECG-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165
2975 Dynamic Threshold Adjustment Approach For Neural Networks

Authors: Hamza A. Ali, Waleed A. J. Rasheed

Abstract:

The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.

Keywords: Classification, Recognition, Neural Networks, Pattern Recognition, Generalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
2974 High-Power Amplifier Pre-distorter Based on Neural Networks for 5G Satellite Communications

Authors: Abdelhamid Louliej, Younes Jabrane

Abstract:

Satellites are becoming indispensable assets to fifth-generation (5G) new radio architecture, complementing wireless and terrestrial communication links. The combination of satellites and 5G architecture allows consumers to access all next-generation services anytime, anywhere, including scenarios, like traveling to remote areas (without coverage). Nevertheless, this solution faces several challenges, such as a significant propagation delay, Doppler frequency shift, and high Peak-to-Average Power Ratio (PAPR), causing signal distortion due to the non-linear saturation of the High-Power Amplifier (HPA). To compensate for HPA non-linearity in 5G satellite transmission, an efficient pre-distorter scheme using Neural Networks (NN) is proposed. To assess the proposed NN pre-distorter, two types of HPA were investigated: Travelling Wave Tube Amplifier (TWTA) and Solid-State Power Amplifier (SSPA). The results show that the NN pre-distorter design presents an Error Vector Magnitude (EVM) improvement by 95.26%. Normalized Mean Square Error (NMSE) and Adjacent Channel Power Ratio (ACPR) were reduced by -43,66 dB and 24.56 dBm, respectively. Moreover, the system suffers no degradation of the Bit Error Rate (BER) for TWTA and SSPA amplifiers.

Keywords: Satellites, 5G, Neural Networks, High-Power Amplifier, Travelling Wave Tube Amplifier, Solid-State Power Amplifier, EVM, NMSE, ACPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75
2973 Rapid Finite-Element Based Airport Pavement Moduli Solutions using Neural Networks

Authors: Kasthurirangan Gopalakrishnan, Marshall R. Thompson, Anshu Manik

Abstract:

This paper describes the use of artificial neural networks (ANN) for predicting non-linear layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA) loading, based on the deflection profiles obtained from Heavy Weight Deflectometer (HWD) test data. The HWD test is one of the most widely used tests for routinely assessing the structural integrity of airport pavements in a non-destructive manner. The elastic moduli of the individual pavement layers backcalculated from the HWD deflection profiles are effective indicators of layer condition and are used for estimating the pavement remaining life. HWD tests were periodically conducted at the Federal Aviation Administration-s (FAA-s) National Airport Pavement Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Beoing 747 (B747) test gear trafficking on the structural condition of flexible pavement sections. In this study, a multi-layer, feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function. The synthetic database generated using an advanced non-linear pavement finite-element program was used to train the ANN to overcome the limitations associated with conventional pavement moduli backcalculation. The changes in ANN-based backcalculated pavement moduli with trafficking were used to compare the relative severity effects of the aircraft landing gears on the NAPTF test pavements.

Keywords: Airfield pavements, ANN, backcalculation, newgeneration aircraft

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175