Search results for: random forest classifier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1007

Search results for: random forest classifier

497 Knowledge Management Applied to Forensic Sciences

Authors: Norma Rodrigues Gomes

Abstract:

This paper presents initiatives of Knowledge Management (KM) applied to Forensic Sciences field, especially developed at the Forensic Science Institute of the Brazilian Federal Police. Successful projects, related to knowledge sharing, drugs analysis and environmental crimes, are reported in the KM perspective. The described results are related to: a) the importance of having an information repository, like a digital library, in such a multidisciplinary organization; b) the fight against drug dealing and environmental crimes, enabling the possibility to map the evolution of crimes, drug trafficking flows, and the advance of deforestation in Amazon rain forest. Perspectives of new KM projects under development and studies are also presented, tracing an evolution line of the KM view at the Forensic Science Institute.

Keywords: Business Intelligence, Digital Library, Forensic Science, Knowledge Management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
496 Codebook Generation for Vector Quantization on Orthogonal Polynomials based Transform Coding

Authors: R. Krishnamoorthi, N. Kannan

Abstract:

In this paper, a new algorithm for generating codebook is proposed for vector quantization (VQ) in image coding. The significant features of the training image vectors are extracted by using the proposed Orthogonal Polynomials based transformation. We propose to generate the codebook by partitioning these feature vectors into a binary tree. Each feature vector at a non-terminal node of the binary tree is directed to one of the two descendants by comparing a single feature associated with that node to a threshold. The binary tree codebook is used for encoding and decoding the feature vectors. In the decoding process the feature vectors are subjected to inverse transformation with the help of basis functions of the proposed Orthogonal Polynomials based transformation to get back the approximated input image training vectors. The results of the proposed coding are compared with the VQ using Discrete Cosine Transform (DCT) and Pairwise Nearest Neighbor (PNN) algorithm. The new algorithm results in a considerable reduction in computation time and provides better reconstructed picture quality.

Keywords: Orthogonal Polynomials, Image Coding, Vector Quantization, TSVQ, Binary Tree Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
495 Clinical Decision Support for Disease Classification based on the Tests Association

Authors: Sung Ho Ha, Seong Hyeon Joo, Eun Kyung Kwon

Abstract:

Until recently, researchers have developed various tools and methodologies for effective clinical decision-making. Among those decisions, chest pain diseases have been one of important diagnostic issues especially in an emergency department. To improve the ability of physicians in diagnosis, many researchers have developed diagnosis intelligence by using machine learning and data mining. However, most of the conventional methodologies have been generally based on a single classifier for disease classification and prediction, which shows moderate performance. This study utilizes an ensemble strategy to combine multiple different classifiers to help physicians diagnose chest pain diseases more accurately than ever. Specifically the ensemble strategy is applied by using the integration of decision trees, neural networks, and support vector machines. The ensemble models are applied to real-world emergency data. This study shows that the performance of the ensemble models is superior to each of single classifiers.

Keywords: Diagnosis intelligence, ensemble approach, data mining, emergency department

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
494 Higher-Dimensional Quantum Cryptography

Authors: Bradley Christensen, Kevin T. McCusker, Daniel J. Gauthier, Daniel Kumor, Venkat Chandar, P. G. Kwiat

Abstract:

We report on a high-speed quantum cryptography system that utilizes simultaneous entanglement in polarization and in “time-bins". With multiple degrees of freedom contributing to the secret key, we can achieve over ten bits of random entropy per detected coincidence. In addition, we collect from multiple spots o the downconversion cone to further amplify the data rate, allowing usto achieve over 10 Mbits of secure key per second.

Keywords: Downconversion, Hyper-entanglement, Quantum Cryptography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
493 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: Color moments, visual thing recognition system, SIFT, color SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
492 Control Chart Pattern Recognition Using Wavelet Based Neural Networks

Authors: Jun Seok Kim, Cheong-Sool Park, Jun-Geol Baek, Sung-Shick Kim

Abstract:

Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characteristics. The procedure of proposed control chart pattern recognizer comprises three stages. First, multi-resolution wavelet analysis is used to generate time-shape and time-frequency coefficients that have detail information about the patterns. Second, distance based features are extracted by a bi-directional Kohonen network to make reduced and robust information. Third, a back-propagation network classifier is trained by these features. The accuracy of the proposed method is shown by the performance evaluation with numerical results.

Keywords: Control chart pattern recognition, Multi-resolution wavelet analysis, Bi-directional Kohonen network, Back-propagation network, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
491 Assessment of Time-Lapse in Visible and Thermal Face Recognition

Authors: Sajad Farokhi, Siti Mariyam Shamsuddin, Jan Flusser, Usman Ullah Sheikh

Abstract:

Although face recognition seems as an easy task for human, automatic face recognition is a much more challenging task due to variations in time, illumination and pose. In this paper, the influence of time-lapse on visible and thermal images is examined. Orthogonal moment invariants are used as a feature extractor to analyze the effect of time-lapse on thermal and visible images and the results are compared with conventional Principal Component Analysis (PCA). A new triangle square ratio criterion is employed instead of Euclidean distance to enhance the performance of nearest neighbor classifier. The results of this study indicate that the ideal feature vectors can be represented with high discrimination power due to the global characteristic of orthogonal moment invariants. Moreover, the effect of time-lapse has been decreasing and enhancing the accuracy of face recognition considerably in comparison with PCA. Furthermore, our experimental results based on moment invariant and triangle square ratio criterion show that the proposed approach achieves on average 13.6% higher in recognition rate than PCA.

Keywords: Infrared Face recognition, Time-lapse, Zernike moment invariants

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
490 Automatic Detection and Classification of Microcalcification, Mass, Architectural Distortion and Bilateral Asymmetry in Digital Mammogram

Authors: S. Shanthi, V. Muralibhaskaran

Abstract:

Mammography has been one of the most reliable methods for early detection of breast cancer. There are different lesions which are breast cancer characteristic such as microcalcifications, masses, architectural distortions and bilateral asymmetry. One of the major challenges of analysing digital mammogram is how to extract efficient features from it for accurate cancer classification. In this paper we proposed a hybrid feature extraction method to detect and classify all four signs of breast cancer. The proposed method is based on multiscale surrounding region dependence method, Gabor filters, multi fractal analysis, directional and morphological analysis. The extracted features are input to self adaptive resource allocation network (SRAN) classifier for classification. The validity of our approach is extensively demonstrated using the two benchmark data sets Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammograph (DDSM) and the results have been proved to be progressive.

Keywords: Feature extraction, fractal analysis, Gabor filters, multiscale surrounding region dependence method, SRAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2944
489 A Multi-Signature Scheme based on Coding Theory

Authors: Mohammed Meziani, Pierre-Louis Cayrel

Abstract:

In this paper we propose two first non-generic constructions of multisignature scheme based on coding theory. The first system make use of the CFS signature scheme and is secure in random oracle while the second scheme is based on the KKS construction and is a few times. The security of our construction relies on a difficult problems in coding theory: The Syndrome Decoding problem which has been proved NP-complete [4].

Keywords: Post-quantum cryptography, Coding-based cryptography, Digital signature, Multisignature scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
488 Improved Automated Classification of Alcoholics and Non-alcoholics

Authors: Ramaswamy Palaniappan

Abstract:

In this paper, several improvements are proposed to previous work of automated classification of alcoholics and nonalcoholics. In the previous paper, multiplayer-perceptron neural network classifying energy of gamma band Visual Evoked Potential (VEP) signals gave the best classification performance using 800 VEP signals from 10 alcoholics and 10 non-alcoholics. Here, the dataset is extended to include 3560 VEP signals from 102 subjects: 62 alcoholics and 40 non-alcoholics. Three modifications are introduced to improve the classification performance: i) increasing the gamma band spectral range by increasing the pass-band width of the used filter ii) the use of Multiple Signal Classification algorithm to obtain the power of the dominant frequency in gamma band VEP signals as features and iii) the use of the simple but effective knearest neighbour classifier. To validate that these two modifications do give improved performance, a 10-fold cross validation classification (CVC) scheme is used. Repeat experiments of the previously used methodology for the extended dataset are performed here and improvement from 94.49% to 98.71% in maximum averaged CVC accuracy is obtained using the modifications. This latest results show that VEP based classification of alcoholics is worth exploring further for system development.

Keywords: Alcoholic, Multilayer-perceptron, Nearest neighbour, Gamma band, MUSIC, Visual evoked potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
487 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies

Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi

Abstract:

Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.

Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
486 A Comparison of Inflow Generation Methods for Large-Eddy Simulation

Authors: Francois T. Pronk, Steven J. Hulshoff

Abstract:

A study of various turbulent inflow generation methods was performed to compare their relative effectiveness for LES computations of turbulent boundary layers. This study confirmed the quality of the turbulent information produced by the family of recycling and rescaling methods which take information from within the computational domain. Furthermore, more general inflow methods also proved applicable to such simulations, with a precursor-like inflow and a random inflow augmented with forcing planes showing promising results.

Keywords: Boundary layer, Flat plate, Inflow modeling, LES

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
485 Dual Construction of Stern-based Signature Scheme

Authors: Pierre-Louis Cayrel, Sidi Mohamed El Yousfi Alaoui

Abstract:

In this paper, we propose a dual version of the first threshold ring signature scheme based on error-correcting code proposed by Aguilar et. al in [1]. Our scheme uses an improvement of Véron zero-knowledge identification scheme, which provide smaller public and private key sizes and better computation complexity than the Stern one. This scheme is secure in the random oracle model.

Keywords: Stern algorithm, Véron algorithm, threshold ring signature, post-quantum cryptography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
484 Influence of Number Parallels Paths of a Winding on Overvoltage in the Asynchronous Motors Fed by PWM- converters

Authors: Belassel Mohand-Tahar

Abstract:

This work is devoted to the calculation of the undulatory parameters and the study of the influence of te number parallel path of a winding on overvoltage compared to the frame and between turns (sections) in a multiturn random winding of an asynchronous motors supplied with PWM- converters.

Keywords: Asynchronous Motors, Parallel path, PWMconverters, Undulatory process, Undulatory parameters, Undulatory voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
483 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier

Authors: Atanu K Samanta, Asim Ali Khan

Abstract:

Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.

Keywords: Artificial neural network, ANN, brain tumor, computer-aided diagnostic, CAD system, gray-level co-occurrence matrix, GLCM, level set method, tumor segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
482 Simulation of a Control System for an Adaptive Suspension System for Passenger Vehicles

Authors: S. Gokul Prassad, S. Aakash, K. Malar Mohan

Abstract:

In the process to cope with the challenges faced by the automobile industry in providing ride comfort, the electronics and control systems play a vital role. The control systems in an automobile monitor various parameters, controls the performances of the systems, thereby providing better handling characteristics. The automobile suspension system is one of the main systems that ensure the safety, stability and comfort of the passengers. The system is solely responsible for the isolation of the entire automobile from harmful road vibrations. Thus, integration of the control systems in the automobile suspension system would enhance its performance. The diverse road conditions of India demand the need of an efficient suspension system which can provide optimum ride comfort in all road conditions. For any passenger vehicle, the design of the suspension system plays a very important role in assuring the ride comfort and handling characteristics. In recent years, the air suspension system is preferred over the conventional suspension systems to ensure ride comfort. In this article, the ride comfort of the adaptive suspension system is compared with that of the passive suspension system. The schema is created in MATLAB/Simulink environment. The system is controlled by a proportional integral differential controller. Tuning of the controller was done with the Particle Swarm Optimization (PSO) algorithm, since it suited the problem best. Ziegler-Nichols and Modified Ziegler-Nichols tuning methods were also tried and compared. Both the static responses and dynamic responses of the systems were calculated. Various random road profiles as per ISO 8608 standard are modelled in the MATLAB environment and their responses plotted. Open-loop and closed loop responses of the random roads, various bumps and pot holes are also plotted. The simulation results of the proposed design are compared with the available passive suspension system. The obtained results show that the proposed adaptive suspension system is efficient in controlling the maximum over shoot and the settling time of the system is reduced enormously.

Keywords: Automobile suspension, MATLAB, control system, PID, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
481 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data

Authors: Rohan Putatunda, Aryya Gangopadhyay

Abstract:

Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).

Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
480 Gait Biometric for Person Re-Identification

Authors: Lavanya Srinivasan

Abstract:

Biometric identification is to identify unique features in a person like fingerprints, iris, ear, and voice recognition that need the subject's permission and physical contact. Gait biometric is used to identify the unique gait of the person by extracting moving features. The main advantage of gait biometric to identify the gait of a person at a distance, without any physical contact. In this work, the gait biometric is used for person re-identification. The person walking naturally compared with the same person walking with bag, coat and case recorded using long wave infrared, short wave infrared, medium wave infrared and visible cameras. The videos are recorded in rural and in urban environments. The pre-processing technique includes human identified using You Only Look Once, background subtraction, silhouettes extraction and synthesis Gait Entropy Image by averaging the silhouettes. The moving features are extracted from the Gait Entropy Energy Image. The extracted features are dimensionality reduced by the Principal Component Analysis and recognized using different classifiers. The comparative results with the different classifier show that Linear Discriminant Analysis outperform other classifiers with 95.8% for visible in the rural dataset and 94.8% for longwave infrared in the urban dataset.

Keywords: biometric, gait, silhouettes, You Only Look Once

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531
479 A Selective Markovianity Approach for Image Segmentation

Authors: A. Melouah, H. Merouani

Abstract:

A new Markovianity approach is introduced in this paper. This approach reduces the response time of classic Markov Random Fields approach. First, one region is determinated by a clustering technique. Then, this region is excluded from the study. The remaining pixel form the study zone and they are selected for a Markovianity segmentation task. With Selective Markovianity approach, segmentation process is faster than classic one.

Keywords: Markovianity, response time, segmentation, study zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
478 An Automatic Pipeline Monitoring System Based on PCA and SVM

Authors: C. Wan, A. Mita

Abstract:

This paper proposes a novel system for monitoring the health of underground pipelines. Some of these pipelines transport dangerous contents and any damage incurred might have catastrophic consequences. However, most of these damage are unintentional and usually a result of surrounding construction activities. In order to prevent these potential damages, monitoring systems are indispensable. This paper focuses on acoustically recognizing road cutters since they prelude most construction activities in modern cities. Acoustic recognition can be easily achieved by installing a distributed computing sensor network along the pipelines and using smart sensors to “listen" for potential threat; if there is a real threat, raise some form of alarm. For efficient pipeline monitoring, a novel monitoring approach is proposed. Principal Component Analysis (PCA) was studied and applied. Eigenvalues were regarded as the special signature that could characterize a sound sample, and were thus used for the feature vector for sound recognition. The denoising ability of PCA could make it robust to noise interference. One class SVM was used for classifier. On-site experiment results show that the proposed PCA and SVM based acoustic recognition system will be very effective with a low tendency for raising false alarms.

Keywords: One class SVM, pipeline monitoring system, principal component analysis, sound recognition, third party damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
477 A Novel Nucleus-Based Classifier for Discrimination of Osteoclasts and Mesenchymal Precursor Cells in Mouse Bone Marrow Cultures

Authors: Andreas Heindl, Alexander K. Seewald, Martin Schepelmann, Radu Rogojanu, Giovanna Bises, Theresia Thalhammer, Isabella Ellinger

Abstract:

Bone remodeling occurs by the balanced action of bone resorbing osteoclasts (OC) and bone-building osteoblasts. Increased bone resorption by excessive OC activity contributes to malignant and non-malignant diseases including osteoporosis. To study OC differentiation and function, OC formed in in vitro cultures are currently counted manually, a tedious procedure which is prone to inter-observer differences. Aiming for an automated OC-quantification system, classification of OC and precursor cells was done on fluorescence microscope images based on the distinct appearance of fluorescent nuclei. Following ellipse fitting to nuclei, a combination of eight features enabled clustering of OC and precursor cell nuclei. After evaluating different machine-learning techniques, LOGREG achieved 74% correctly classified OC and precursor cell nuclei, outperforming human experts (best expert: 55%). In combination with the automated detection of total cell areas, this system allows to measure various cell parameters and most importantly to quantify proteins involved in osteoclastogenesis.

Keywords: osteoclasts, machine learning, ellipse fitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
476 A Distinguish Attack on COSvd Cipher

Authors: Mohammad Ali Orumiehchi ha, R. Mirghadri

Abstract:

The COSvd Ciphers has been proposed by Filiol and others (2004). It is a strengthened version of COS stream cipher family denoted COSvd that has been adopted for at least one commercial standard. We propose a distinguish attack on this version, and prove that, it is distinguishable from a random stream. In the COSvd Cipher used one S-Box (10×8) on the final part of cipher. We focus on S-Box and use weakness this S-Box for distinguish attack. In addition, found a leak on HNLL that the sub s-boxes don-t select uniformly. We use this property for an Improve distinguish attack.

Keywords: Stream cipher, COSvd cipher, distinguish attack, nonlinear feedback shift registers, chaotic layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157
475 Improved Closed Set Text-Independent Speaker Identification by Combining MFCC with Evidence from Flipped Filter Banks

Authors: Sandipan Chakroborty, Anindya Roy, Goutam Saha

Abstract:

A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for SI applications. However, due to the structure of its filter bank, it captures vocal tract characteristics more effectively in the lower frequency regions. This paper proposes a new set of features using a complementary filter bank structure which improves distinguishability of speaker specific cues present in the higher frequency zone. Unlike high level features that are difficult to extract, the proposed feature set involves little computational burden during the extraction process. When combined with MFCC via a parallel implementation of speaker models, the proposed feature set outperforms baseline MFCC significantly. This proposition is validated by experiments conducted on two different kinds of public databases namely YOHO (microphone speech) and POLYCOST (telephone speech) with Gaussian Mixture Models (GMM) as a Classifier for various model orders.

Keywords: Complementary Information, Filter Bank, GMM, IMFCC, MFCC, Speaker Identification, Speaker Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
474 Capability Investigation of Carbon Sequestration in Two Species (Artemisia sieberi Besser and Stipabarbata Desf) Under Different Treatments of Vegetation Management (Saveh, Iran)

Authors: M. Alizadeh, M. Mahdavi, M.H. Jouri

Abstract:

The rangelands, as one of the largest dynamic biomes in the world, have very capabilities. Regulation of greenhouse gases in the Earth's atmosphere, particularly carbon dioxide as the main these gases, is one of these cases. The attention to rangeland, as cheep and reachable resources to sequestrate the carbon dioxide, increases after the Industrial Revolution. Rangelands comprise the large parts of Iran as a steppic area. Rudshur (Saveh), as area index of steppic area, was selected under three sites include long-term exclosure, medium-term exclosure, and grazable area in order to the capable of carbon dioxide’s sequestration of dominated species. Canopy cover’s percentage of two dominated species (Artemisia sieberi Besser & Stipa barbata Desf) was determined via establishing of random 1 square meter plot. The sampling of above and below ground biomass style was obtained by complete random. After determination of ash percentage in the laboratory; conversion ratio of plant biomass to organic carbon was calculated by ignition method. Results of the paired t-test showed that the amount of carbon sequestration in above ground and underground biomass of Artemisia sieberi Besser & Stipa barbata Desf is different in three regions. It, of course, hasn’t any difference between under and surface ground’s biomass of Artemisia sieberi Besser in long-term exclosure. The independent t-test results indicate differences between underground biomass corresponding each other in the studied sites. Carbon sequestration in the Stipa barbata Desf was totally more than Artemisia sieberi Besser. Altogether, the average sequestration of the long-term exclosure was 5.842gr/m², the medium-term exclosure was 4.115gr/m², and grazable area was 5.975gr/m² so that there isn’t valuable statistical difference in term of total amount of carbon sequestration to three sites.

Keywords: Carbon sequestration, the Industrial Revolution, greenhouse gases, Artemisia sieberi Besser, Stipa barbata Desf, steppic rangelands

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
473 Evolutionary Dynamics on Small-World Networks

Authors: Jan Rychtar, Brian Stadler

Abstract:

We study how the outcome of evolutionary dynamics on graphs depends on a randomness on the graph structure. We gradually change the underlying graph from completely regular (e.g. a square lattice) to completely random. We find that the fixation probability increases as the randomness increases; nevertheless, the increase is not significant and thus the fixation probability could be estimated by the known formulas for underlying regular graphs.

Keywords: evolutionary dynamics, small-world networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
472 On Musical Information Geometry with Applications to Sonified Image Analysis

Authors: Shannon Steinmetz, Ellen Gethner

Abstract:

In this paper a theoretical foundation is developed to segment, analyze and associate patterns within audio. We explore this on imagery via sonified audio applied to our segmentation framework. The approach involves a geodesic estimator within the statistical manifold, parameterized by musical centricity. We demonstrate viability by processing a database of random imagery to produce statistically significant clusters of similar imagery content.

Keywords: Sonification, musical information geometry, image content extraction, automated quantification, audio segmentation, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
471 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
470 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test

Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath

Abstract:

As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.

Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
469 Study on the Chaotic Cipher Combined with Mersenne Twister

Authors: Daiki Yoshida, Ariyoshi Nakayama, Hirotaka Watanabe, Taichi Sato, Syuhei Kuriyama, Hiroyuki Kamata

Abstract:

In this study, we propose the chaotic cipher combined with Mersenne Twister that is an extremely good pseudo-random number generator for the secure communications. We investigate the Lyapunov exponent of the proposed system, and evaluate the randomness performance by comparing RC4 and the chaotic cipher. In these results, our proposed system gets high chaotic property and more randomness than the conventional ciphers.

Keywords: Chaos, chaotic property, cipher, Mersenne Twister, Randomness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
468 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature

Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak

Abstract:

In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.

Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149