Search results for: Golgohar Iron Ore Mining & Industrial Company
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2312

Search results for: Golgohar Iron Ore Mining & Industrial Company

1802 Effects of IPPC Permits on Ambient Air Quality

Authors: C. Cafaro, P. Ceci, L. De Giorgi

Abstract:

The aim of this paper is to give an assessment of environmental effects of IPPC permit conditions of installations that are in specific territory with high concentration of industrial activities. The IPPC permit is the permit that each operator should hold to operate the installation as stated by the directive 2010/75/UE on industrial emissions (integrated pollution prevention and control), known as IED (Industrial Emissions Directive). The IPPC permit includes all the measures necessary to achieve a high level of protection of the environment as a whole, also defining the monitoring requirements as measurement methodology, frequency and evaluation procedure. The emissions monitoring of a specific plant may also give indications of the contribution of these emissions on the air quality of a definite area. So, it is clear that the IPPC permits are important tools both to improve the environmental framework and to achieve the air quality standards, assisting to assess the possible industrial sources contributions to air pollution.

Keywords: IPPC, IED, emissions, permits, air quality, large combustion plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2297
1801 Feature Selection Approaches with Missing Values Handling for Data Mining - A Case Study of Heart Failure Dataset

Authors: N.Poolsawad, C.Kambhampati, J. G. F. Cleland

Abstract:

In this paper, we investigated the characteristic of a clinical dataseton the feature selection and classification measurements which deal with missing values problem.And also posed the appropriated techniques to achieve the aim of the activity; in this research aims to find features that have high effect to mortality and mortality time frame. We quantify the complexity of a clinical dataset. According to the complexity of the dataset, we proposed the data mining processto cope their complexity; missing values, high dimensionality, and the prediction problem by using the methods of missing value replacement, feature selection, and classification.The experimental results will extend to develop the prediction model for cardiology.

Keywords: feature selection, missing values, classification, clinical dataset, heart failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3211
1800 Using Historical Data for Stock Prediction of a Tech Company

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices over the past five years of 10 major tech companies: Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We implemented and tested three models – a linear regressor model, a k-nearest neighbor model (KNN), and a sequential neural network – and two algorithms – Multiplicative Weight Update and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: Finance, machine learning, opening price, stock market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
1799 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
1798 Scrum as the Method Supporting the Implementation of Knowledge Management in an Organization

Authors: Andrej Miklošík, Eva Hvizdová, Štefan Žák

Abstract:

Many companies have switched their processes to project-oriented in the last years. This brings new possibilities and effectiveness not only in the field of external processes connected with the product delivery but also the internal processes as well. However centralized project organization which is based on the role of project manager in the team has proved insufficient in some cases. Agile methods of project organization are trying to solve this problem by bringing new view on the project organization, roles, processes and competences. Scrum is one of these methods which builds on the principles of knowledge management to drive the project to effectiveness from all view angles. Using this method to organize internal and delivery projects helps the organization to create and share knowledge throughout the company. It also supports forming unique competences of individuals and project teams and drives innovations in the company.

Keywords: agile software development, knowledge management, knowledge dissemination, project management, SCRUM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
1797 A Strategic Evaluation Approach for Defining the Maturity of Manufacturing Technologies

Authors: G. Reinhart, S. Schindler

Abstract:

Due to dynamic evolution, the ability of a manufacturing technology to produce a special product is changing. Therefore, it is essential to monitor the established techniques and processes to detect whether a company-s production will fit future circumstances. Concerning the manufacturing technology planning process, companies must decide when to change to a new technology for maintaining and increasing competitive advantages. In this context, the maturity assessment of the focused technologies is crucial. This article presents an approach for defining the maturity of a manufacturing technology from a strategic point of view. The concept is based on the approach of technology readiness level (TRL) according to NASA (National Aeronautics and Space Administration), but also includes dynamic changes. Therefore, the model takes into account the concept of the technology life cycle. Furthermore, it enables a company to estimate the ideal date for implementation of a new manufacturing technology.

Keywords: Maturity Assessment, Manufacturing Technology Planning, Technology Life Cycle, Technology Readiness Level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
1796 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1795 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
1794 Mining User-Generated Contents to Detect Service Failures with Topic Model

Authors: Kyung Bae Park, Sung Ho Ha

Abstract:

Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.

Keywords: Latent Dirichlet allocation, R program, text mining, topic model, user generated contents, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
1793 A Control Model for the Dismantling of Industrial Plants

Authors: Florian Mach, Eric Hund, Malte Stonis

Abstract:

The dismantling of disused industrial facilities such as nuclear power plants or refineries is an enormous challenge for the planning and control of the logistic processes. Existing control models do not meet the requirements for a proper dismantling of industrial plants. Therefore, the paper presents an approach for the control of dismantling and post-processing processes (e.g. decontamination) in plant decommissioning. In contrast to existing approaches, the dismantling sequence and depth are selected depending on the capacity utilization of required post-processing processes by also considering individual characteristics of respective dismantling tasks (e.g. decontamination success rate, uncertainties regarding the process times). The results can be used in the dismantling of industrial plants (e.g. nuclear power plants) to reduce dismantling time and costs by avoiding bottlenecks such as capacity constraints.

Keywords: Dismantling management, logistics planning and control models, nuclear power plant dismantling, reverse logistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
1792 A Scenario Oriented Supplier Selection by Considering a Multi Tier Supplier Network

Authors: Mohammad Najafi Nobar, Bahareh Pourmehr, Mehdi Hajimirarab

Abstract:

One of the main processes of supply chain management is supplier selection process which its accurate implementation can dramatically increase company competitiveness. In presented article model developed based on the features of second tiers suppliers and four scenarios are predicted in order to help the decision maker (DM) in making up his/her mind. In addition two tiers of suppliers have been considered as a chain of suppliers. Then the proposed approach is solved by a method combined of concepts of fuzzy set theory (FST) and linear programming (LP) which has been nourished by real data extracted from an engineering design and supplying parts company. At the end results reveal the high importance of considering second tier suppliers features as criteria for selecting the best supplier.

Keywords: Supply Chain Management (SCM), SupplierSelection, Second Tier Supplier, Scenario Planning, Green Factor, Linear Programming, Fuzzy Set Theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
1791 Removal of Vanadium from Industrial Effluents by Natural Ion Exchanger

Authors: Shashikant R. Kuchekar, Haribhau R. Aher, Priti M. Dhage

Abstract:

The removal vanadium from aqueous solution using natural exchanger was investigated. The effects of pH, contact time and exchanger dose were studied at ambient temperature (25 0C ± 2 0C). The equilibrium process was described by the Langmuir isotherm model with adsorption capacity for vanadium. The natural exchanger i.e. tamarindus seeds powder was treated with formaldehyde and sulpuric acid to increase the adsorptivity of metals. The maximum exchange level was attained as 80.1% at pH 3 with exchanger dose 5 g and contact time 60 min. Method is applied for removal of vanadium from industrial effluents.

Keywords: Industrial effluent, natural ion exchange, Tamarindus indica, vanadium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736
1790 Optimal Assessment of Faulted Area around an Industrial Customer for Critical Sag Magnitudes

Authors: Marios N. Moschakis

Abstract:

This paper deals with the assessment of faulted area around an industrial customer connected to a particular electric grid that will cause a certain sag magnitude on this customer. The faulted (critical or exposed) area’s length is calculated by adding all line lengths in the neighborhood of the critical node (customer). The applied method is the so-called Method of Critical Distances. By using advanced short-circuit analysis, the Critical Area can be accurately calculated for radial and meshed power networks due to all symmetrical and asymmetrical faults. For the demonstration of the effectiveness of the proposed methodology, a study case is used.

Keywords: Critical area, fault-induced voltage sags, industrial customers, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1789 Study on Landscape Pattern Evolution of Ecological-Living-Industrial Land in Plateau Mountainous Area: A Case Study of Yuxi City, Yunnan Province

Authors: Ying Pan, Li Wu, Jing Zhou, Lan Li

Abstract:

The coordination and development of ecological-living-industrial land uses are the premise foundations for the formulation and implementation of the current land space planning, and more attention should be paid to plateau mountainous areas. This research is based on spatial analysis technology and landscape pattern index method taking Yuxi city, a typical mountainous plateau as the research area. By using relevant software such as ArcGIS10.5, Fragstats 4.2 and the four remote sensing images of Yuxi city in 1980, 1995, 2005 and 2015, the temporal-spatial evolution and differentiation pattern of ecological-living-industrial land applications have been discussed. The research results show that: (1) From the perspective of land use type change, ecological land of Yuxi city has been the main source of land from 1980 to 2015, which totally occupies more than 78%. During this period, the spatial structure of the ecological-living-industrial land changed significantly, namely, the living land. Its land area increased significantly from 0.83% of the total area in 1980 to 1.25% in 2015, the change range of ecological land and industrial land is relatively small. (2) In terms of land use landscape pattern transfer matrix, from 1980 to 2015, the industrial land and ecological land in Yuxi city have been gradually transferred to living land. (3) In the aspect of landscape pattern changes, various landscape pattern indexes of Yuxi city indicate that the fragmentation degree of landscape pattern of the ecological-living-industrial land in this region is increasing. The degree of agglomeration goes down, and the landscape types have changed from being relatively simple to relatively rich. The landscape is more diverse, but the patch size is uneven, meanwhile, the integrity of the ecological space is destroyed.

Keywords: Ecological-living-industrial land, spatio-temporal evolution, landscape pattern, plateau mountainous area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
1788 A Lean Manufacturing Profile of Practices in the Metallurgical Industry: A Methodology for Multivariate Analysis

Authors: Jonathan D. Morales M., Ramón Silva R.

Abstract:

The purpose of this project is to carry out an analysis and determine the profile of actual lean manufacturing processes in the Metropolitan Area of Bucaramanga. Through the analysis of qualitative and quantitative variables it was possible to establish how these manufacturers develop production practices that ensure their competitiveness and productivity in the market. In this study, a random sample of metallurgic and wrought iron companies was applied, following which a quantitative focus and analysis was used to formulate a qualitative methodology for measuring the level of lean manufacturing procedures in the industry. A qualitative evaluation was also carried out through a multivariate analysis using the Numerical Taxonomy System (NTSYS) program which should allow for the determination of Lean Manufacturing profiles. Through the results it was possible to observe how the companies in the sector are doing with respect to Lean Manufacturing Practices, as well as identify the level of management that these companies practice with respect to this topic. In addition, it was possible to ascertain that there is no one dominant profile in the sector when it comes to Lean Manufacturing. It was established that the companies in the metallurgic and wrought iron industry show low levels of Lean Manufacturing implementation. Each one carries out diverse actions that are insufficient to consolidate a sectoral strategy for developing a competitive advantage which enables them to tie together a production strategy.

Keywords: Lean manufacturing, metallurgic industry, production line management, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
1787 Perceptions of Corporate Social Responsibility Concept in Greece

Authors: Grigoris Giannarakis, Nikolaos Litinas, Ioannis Theotokas

Abstract:

This study attempts to clarify major perspectives of Corporate Social Responsibility (CSR) in the Greek market related to companies that have sufficient CSR. An empirical analysis was undertaken, based on literature review and previous observations and surveys, in order to provide a general analysis of the CSR concept in Greece. The results of Accountability Rating institution were used in order to identify companies that adopt an integrated social responsibility approach. Companies that responded to the survey are both regional and international and belong to different industrial fields. Some of the main survey results reveal: multiple aspects for the CSR concept, weak consensus as regards the importance of stakeholders and benefits from the CSR implementation, the important role of CSR in the decision procedure and CSR practices concerning social issues that affect mostly company-s competitiveness. Sharing companies- experience could address common social issues through CSR best practices and develop new knowledge.

Keywords: Corporate Social Responsibility, Greece, Kendall's co-efficient of concordance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
1786 Identification of the Key Sustainability Issues to Develop New Decision Support Tools in the Spanish Furniture Sector

Authors: P.Cordero, R.Poler, R.Sanchis

Abstract:

The environmental impacts caused by the current production and consumption models, together with the impact that the current economic crisis, bring necessary changes in the European industry toward new business models based on sustainability issues that could allow them to innovate and improve their competitiveness. This paper analyzes the key environmental issues and the current and future market trends in one of the most important industrial sectors in Spain, the furniture sector. It also proposes new decision support tools -diagnostic kit, roadmap and guidelines- to guide companies to implement sustainability criteria into their organizations, including eco-design strategies and other economical and social strategies in accordance with the sustainability definition, and other available tools such as eco-labels, environmental management systems, etc., and to use and combine them to obtain the results the company expects to help improve its competitiveness.

Keywords: Furniture sector, eco-design, sustainability, economical crisis, market trends, roadmap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
1785 An Experimental Investigation of Factors Affecting Consumers' Reactions to Mobile APP-Based Promotions

Authors: Shu-Lu Hsu, Jeffrey C. F. Tai, Yi-Han Wang

Abstract:

The purpose of this study is to understand how consumers react to a company's promotional offers with mobile applications (APP) as premiums. This paper presents the results of an experimental study where five features of APP were involved: the cost (free/discounted) for earning APP, the relationship between APP and the promoted product, the perceived usefulness, the perceived ease of use, and the perceived playfulness of APP in the context of light foods purchase. The results support that the above features, except perceived ease of use, have substantial influences on consumers' intention to adopt the APP. Among the five features, the cost for earning APP has the most impact on the adopting intention of APP. The study also found a positive influence of adopting intention of APP on the consumer's purchase intention of the promoted product. Thus, APP-based premiums may enhance the consumer's purchase intention of a company's promoted products.

Keywords: Mobile Application, Premium, Sales Promotion, TAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
1784 Evaluating Efficiency of Nina Distribution Company Using Window Data Envelopment Analysis and Malmquist Index

Authors: Hossein Taherian Far, Ali Bazaee

Abstract:

Achieving continuous sustained economic growth and following economic development can be the target for all countries which are looking for it. In this regard, distribution industry plays an important role in growth and development of any nation. So, estimating the efficiency and productivity of the so called industry and identifying factors influencing it, is very necessary. The objective of the present study is to measure the efficiency and productivity of seven branches of Nina Distribution Company using window data envelopment analysis and Malmquist productivity index from spring 2013 to summer 2015. In this study, using criteria of fixed assets, payroll personnel, operating costs and duration of collection of receivables were selected as inputs and people and net sales, gross profit and percentage of coverage to customers were selected as outputs. Then, the process of performance window data envelopment analysis was driven and process efficiency has been measured using Malmquist index. The results indicate that the average technical efficiency of window Data Envelopment Analysis (DEA) model and fluctuating trend is sustainable. But the average management efficiency in window DEA model is related with negative growth (decline) of about 13%. The mean scale efficiency in all windows, except in the second one which is faced with 8%, shows growth of 18% compared to the first window. On the other hand, the mean change in total factor productivity in all branches of the industry shows average negative growth (decrease) of 12% which are the result of a negative change in technology.

Keywords: Nina Distribution Company branches, window data envelopment analysis, Malmquist productivity index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
1783 Physical and Chemical Properties Analysis of Jatropha curcas Seed Oil for Industrial Applications

Authors: Bashar Mudhaffar Abdullah, Rahimi M. Yusop, Jumat Salimon, Emad Yousif, Nadia Salih

Abstract:

A study on the physicochemical properties of Jatropha curcas seed oil for industrial applications were carried out. Physicochemical properties of J. curcas seed oil (59.32% lipids) showed high content of LA (36.70%), iodine value (104.90 mg/g) and saponification value (203.36 mg/g). The present study shows that, J. curcas seed oil is rich in oleic and linoleic acids. The J. curcas seed oil with the highest amount of polyunsaturated fatty acids (linoleic acid) can find an application in surface coating industries and biolubricant base oil applications, whereas the high amount of monounsaturated fatty acid can find an application as a biodiesel feed stock. J. curcas seed oil contains major TAG of monounsaturated OLL, POL, SLL, PLL, OOL, OOO and POP followed by LLL. J. curcas seed oil can be classified as unsaturated oil with an unsaturated fat level of 80.42%. Hence the J. curcas seed oil has great potential for industrial applications such as in paint and surface coatings, production of biodiesel and biolubricant. Therefore, it is crucial to have more research on J. curcas seed oil in the future to explore its potential as a future industrial oilseed crop.

Keywords: Physical, chemical, Jatropha curcas seed oil, industrial applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6027
1782 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2776
1781 Strategic Mine Planning: A SWOT Analysis Applied to KOV Open Pit Mine in the Democratic Republic of Congo

Authors: Patrick May Mukonki

Abstract:

KOV pit (Kamoto Oliveira Virgule) is located 10 km from Kolwezi town, one of the mineral rich town in the Lualaba province of the Democratic Republic of Congo. The KOV pit is currently operating under the Katanga Mining Limited (KML), a Glencore-Gecamines (a State Owned Company) join venture. Recently, the mine optimization process provided a life of mine of approximately 10 years withnice pushbacks using the Datamine NPV Scheduler software. In previous KOV pit studies, we recently outlined the impact of the accuracy of the geological information on a long-term mine plan for a big copper mine such as KOV pit. The approach taken, discussed three main scenarios and outlined some weaknesses on the geological information side, and now, in this paper that we are going to develop here, we are going to highlight, as an overview, those weaknesses, strengths and opportunities, in a global SWOT analysis. The approach we are taking here is essentially descriptive in terms of steps taken to optimize KOV pit and, at every step, we categorized the challenges we faced to have a better tradeoff between what we called strengths and what we called weaknesses. The same logic is applied in terms of the opportunities and threats. The SWOT analysis conducted in this paper demonstrates that, despite a general poor ore body definition, and very rude ground water conditions, there is room for improvement for such high grade ore body.

Keywords: Mine planning, mine optimization, mine scheduling, SWOT analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
1780 mCRM-s New Opportunities of Customer Satisfaction

Authors: Cheng Fang Hsu, Shinn-Jong Lin

Abstract:

This paper aims at a new challenge of customer satisfaction on mobile customer relationship management. In this paper presents a conceptualization of mCRM on its unique characteristics of customer satisfaction. Also, this paper develops an empirical framework in conception of customer satisfaction in mCRM. A single-case study is applied as the methodology. In order to gain an overall view of the empirical case, this paper accesses to invisible and important information of company in this investigation. Interview is the key data source form the main informants of the company through which the issues are identified and the proposed framework is built. It supports the development of customer satisfaction in mCRM; links this theoretical framework into practice; and provides the direction for future research. Therefore, this paper is very useful for the industries as it helps them to understand how customer satisfaction changes the mCRM structure and increase the business competitive advantage. Finally, this paper provides a contribution in practice by linking a theoretical framework in conception of customer satisfaction in mCRM for companies to a practical real case.

Keywords: Customer Satisfaction; mCRM; MobileCommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
1779 The Optimal Production of Long-Beans in the Swamp Land by Application of Rhizobium and Rice Husk Ash

Authors: Hasan Basri Jumin, Abdur Rahman, M. Nur, Ernita, Tati Maharani

Abstract:

The swamp land contains high levels of iron and aluminum, as well as a low pH. Calcium and magnesium present in the rice husk ash can mitigate plant poisoning, thereby enhancing plant growth and fertility. Two main factors were considered in the study: The dosage of rice husk, and the rhizobium inoculant dosage, which was varied at 0.0 g/kg seed, 4.0 g/kg seed, 8.0 g/kg seed, and 12.0 g/kg seed. The plants were cultivated under controlled lighting conditions with a photoperiod of 11.45 to 12.15 hours. The combination of rhizobium inoculant and rice husk ash has demonstrated an interacting effect on the production of fresh weight in long bean pods. The mean relative growth rate, net assimilation rate, and pod fresh weight are increased by a combination of husk rice ash and rhizobium inoculant. Rice husk ash enhances nitrogen availability in the soil, even in cases of poor nutritional conditions. Rhizobium plays an active role in nitrogen fixation from the atmosphere, as it enhances both intercellular and symbiotic nitrogen capabilities in long beans. The combination of rice husk ash and rhizobium can effectively contribute to thriving soil conditions.

Keywords: Aluminum, calcium, fixation, iron, nitrogen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165
1778 Maintenance Management System for Upstream Operations in Oil and Gas Industry: Case Study

Authors: Wan Hasrulnizzam Wan Mahmood, Mohd Nizam Ab Rahman, Husiah Mazli, Baba Md Deros

Abstract:

This paper explores the plant maintenance management system that has been used by giant oil and gas company in Malaysia. The system also called as PMMS used to manage the upstream operations for more than 100 plants of the case study company. Moreover, from the observations, focus group discussion with PMMS personnel and application through simulation (SAP R/3), the paper reviews the step-by-step approach and the elements that required for the PMMS. The findings show that the PMMS integrates the overall business strategy in upstream operations that consist of asset management, work management and performance management. In addition, PMMS roles are to help operations personnel organize and plan their daily activities, to improve productivity and reduce equipment downtime and to help operations management analyze the facilities and create performance, and to provide and maintain the operational effectiveness of the facilities.

Keywords: Maintenance, Oil and Gas Industry, Upstream Operations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12535
1777 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
1776 Analysis of Dust Particles in Snow Cover in the Surroundings of the City of Ostrava: Particle Size Distribution, Zeta Potential and Heavy Metal Content

Authors: Roman Marsalek

Abstract:

In this paper, snow samples containing dust particles from several sampling points around the city of Ostrava were analyzed. The pH values of sampled snow were measured and solid particles analyzed. Particle size, zeta potential and content of selected heavy metals were determined in solid particles. The pH values of most samples lay in the slightly acid region. Mean values of particle size ranged from 290.5 to 620.5 nm. Zeta potential values varied between -5 and -26.5 mV. The following heavy metal concentration ranges were found: copper 0.08-0.75 mg/g, lead 0.05-0.9 mg/g, manganese 0.45-5.9 mg/g and iron 25.7-280.46 mg/g. The highest values of copper and lead were found in the vicinity of busy crossroads, and on the contrary, the highest levels of manganese and iron were detected close to a large steelworks. The proportion between pH values, zeta potentials, particle sizes and heavy metal contents was established. Zeta potential decreased with rising pH values and, simultaneously, heavy metal content in solid particles increased. At the same time, higher metal content corresponded to lower particle size.

Keywords: Dust, snow, zeta potential, particles size distribution, heavy metals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
1775 Post Mining- Discovering Valid Rules from Different Sized Data Sources

Authors: R. Nedunchezhian, K. Anbumani

Abstract:

A big organization may have multiple branches spread across different locations. Processing of data from these branches becomes a huge task when innumerable transactions take place. Also, branches may be reluctant to forward their data for centralized processing but are ready to pass their association rules. Local mining may also generate a large amount of rules. Further, it is not practically possible for all local data sources to be of the same size. A model is proposed for discovering valid rules from different sized data sources where the valid rules are high weighted rules. These rules can be obtained from the high frequency rules generated from each of the data sources. A data source selection procedure is considered in order to efficiently synthesize rules. Support Equalization is another method proposed which focuses on eliminating low frequency rules at the local sites itself thus reducing the rules by a significant amount.

Keywords: Association rules, multiple data stores, synthesizing, valid rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
1774 A Study of Lean Principles Implementation in the Libyan Healthcare and Industry Sectors

Authors: Nasser M. Amaitik, Ngwan F. Elsagzli

Abstract:

Lean technique is very important in the service and industrial fields. It is defined as an effective tool to eliminate the wastes. In lean the wastes are defined as anything which does not add value to the end product. There are wastes that can be avoided, but some are unavoidable for many reasons.    

The present study aims to apply the principles of lean in two different sectors, healthcare and industry. Two case studies have been selected to apply the experimental work. The first case was Al-Jalaa Hospital, while the second case study was the Technical Company of Aluminum Sections in Benghazi, LIBYA. In both case studies the Value Stream Map (VSM) of the current state has been constructed. The proposed plans have been implemented by merging or eliminating procedures or processes.

The results obtained from both case studies showed improvement in Capacity, Idle time and Utilized time.

Keywords: Healthcare service delivery, Idle time, Lean principles, Utilized time, Value stream mapping, Wastes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
1773 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.

Authors: Qasim M. Kriri

Abstract:

Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.

Keywords: Parameter linear programming, objective function, sensitivity analysis, optimize profit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2908