Search results for: big data visualization.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7568

Search results for: big data visualization.

7088 An Evaluation Model for Semantic Enablement of Virtual Research Environments

Authors: Tristan O'Neill, Trina Myers, Jarrod Trevathan

Abstract:

The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for crossdomain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.

Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
7087 Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model

Authors: Siyuan Jing, Kun She

Abstract:

Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.

Keywords: attribute reduction, incomplete data, inconsistent data, tolerance neighborhood relation, rough sets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
7086 A Mobile Agent-based Clustering Data Fusion Algorithm in WSN

Authors: Xiangbin Zhu, Wenjuan Zhang

Abstract:

In wireless sensor networks,the mobile agent technology is used in data fusion. According to the node residual energy and the results of partial integration,we design the node clustering algorithm. Optimization of mobile agent in the routing within the cluster strategy for wireless sensor networks to further reduce the amount of data transfer. Through the experiments, using mobile agents in the integration process within the cluster can be reduced the path loss in some extent.

Keywords: wireless sensor networks, data fusion, mobile agent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
7085 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: Data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
7084 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: Building archetypes, data analysis, energy benchmarks, GHG emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
7083 Making Data Structures and Algorithms more Understandable by Programming Sudoku the Human Way

Authors: Roelien Goede

Abstract:

Data Structures and Algorithms is a module in most Computer Science or Information Technology curricula. It is one of the modules most students identify as being difficult. This paper demonstrates how programming a solution for Sudoku can make abstract concepts more concrete. The paper relates concepts of a typical Data Structures and Algorithms module to a step by step solution for Sudoku in a human type as opposed to a computer oriented solution.

Keywords: Data Structures, Algorithms, Sudoku, ObjectOriented Programming, Programming Teaching, Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097
7082 Mining Educational Data to Analyze the Student Motivation Behavior

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.

Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
7081 Keyword Network Analysis on the Research Trends of Life-Long Education for People with Disabilities in Korea

Authors: Jakyoung Kim, Sungwook Jang

Abstract:

The purpose of this study is to examine the research trends of life-long education for people with disabilities using a keyword network analysis. For this purpose, 151 papers were selected from 594 papers retrieved using keywords such as 'people with disabilities' and 'life-long education' in the Korean Education and Research Information Service. The Keyword network analysis was constructed by extracting and coding the keyword used in the title of the selected papers. The frequency of the extracted keywords, the centrality of degree, and betweenness was analyzed by the keyword network. The results of the keyword network analysis are as follows. First, the main keywords that appeared frequently in the study of life-long education for people with disabilities were 'people with disabilities', 'life-long education', 'developmental disabilities', 'current situations', 'development'. The research trends of life-long education for people with disabilities are focused on the current status of the life-long education and the program development. Second, the keyword network analysis and visualization showed that the keywords with high frequency of occurrences also generally have high degree centrality and betweenness centrality. In terms of the keyword network diagram, it was confirmed that research trends of life-long education for people with disabilities are centered on six prominent keywords. Based on these results, it was discussed that life-long education for people with disabilities in the future needs to expand the subjects and the supporting areas of the life-long education, and the research needs to be further expanded into more detailed and specific areas. 

Keywords: Life-long education, people with disabilities, research trends, keyword network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
7080 Operation Planning of Concrete Box Girder Bridge by 4D CAD Visualization Techniques

Authors: Mohammad Rohani, Gholamali Shafabakhsh, Abdolhosein Haddad, Ehsan Asnaashari

Abstract:

Visual simulation has emerged as a key planning tool in built environment because it enables architects, engineers and project managers to visualize construction process evolution before the project actual commences. This provides an efficient technology for reducing time and cost through planning and controlling resources, machines and materials. With the development of infrastructure projects and the massive civil constructions such as bridges, urban tunnels and highways as well as sensitivity of their construction operations, it is very necessary to apply proper planning methods. Implementation of visual techniques into management of construction projects can provide a fundamental foundation for projects with massive activities and duplicate items. So, the purpose of this paper is to develop visual simulation management techniques for infrastructure projects such as highways bridges by the use of Four-Dimensional Computer-Aided design Models. This project simulates operational assembly-line for Box-Girder Concrete Bridges which it would be able to optimize the sequence and interaction of project activities and on the other hand, it would minimize any unintended conflicts prior to project start. In this paper, after introducing the various planning methods by building information model and concrete bridges in highways, an executive case study is demonstrated and then a visual technique (4D CAD) will be applied for the case. In the final step, the user feedback for interacting by this system evaluated according to six criteria.

Keywords: 4D application area, Box-Girder concrete bridges, CAD model, visual planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
7079 Experimental and Numerical Simulation of Fire in a Scaled Underground Station

Authors: Nuri Yucel, Muhammed Ilter Berberoglu, Salih Karaaslan, Nureddin Dinler

Abstract:

The objective of this study is to investigate fire behaviors, experimentally and numerically, in a scaled version of an underground station. The effect of ventilation velocity on the fire is examined. Fire experiments are simulated by burning 10 ml isopropyl alcohol fuel in a fire pool with dimensions 5cm x 10cm x 4 mm at the center of 1/100 scaled underground station model. A commercial CFD program FLUENT was used in numerical simulations. For air flow simulations, k-ω SST turbulence model and for combustion simulation, non-premixed combustion model are used. This study showed that, the ventilation velocity is increased from 1 m/s to 3 m/s the maximum temperature in the station is found to be less for ventilation velocity of 1 m/s. The reason for these experimental result lies on the relative dominance of oxygen supply effect on cooling effect. Without piston effect, maximum temperature occurs above the fuel pool. However, when the ventilation velocity increased the flame was tilted in the direction of ventilation and the location of maximum temperature moves along the flow direction. The velocities measured experimentally in the station at different locations are well matched by the CFD simulation results. The prediction of general flow pattern is satisfactory with the smoke visualization tests. The backlayering in velocity is well predicted by CFD simulation. However, all over the station, the CFD simulations predicted higher temperatures compared to experimental measurements.

Keywords: Fire, underground station, flame propagation, CFDsimulation, k-ω SST turbulence model, non-premixed combustionmodel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
7078 Construction Of Decentralized Lifetime Maximizing Tree for Data Aggregation in Wireless Sensor Networks

Authors: Deepali Virmani , Satbir Jain

Abstract:

To meet the demands of wireless sensor networks (WSNs) where data are usually aggregated at a single source prior to transmitting to any distant user, there is a need to establish a tree structure inside any given event region. In this paper , a novel technique to create one such tree is proposed .This tree preserves the energy and maximizes the lifetime of event sources while they are constantly transmitting for data aggregation. The term Decentralized Lifetime Maximizing Tree (DLMT) is used to denote this tree. DLMT features in nodes with higher energy tend to be chosen as data aggregating parents so that the time to detect the first broken tree link can be extended and less energy is involved in tree maintenance. By constructing the tree in such a way, the protocol is able to reduce the frequency of tree reconstruction, minimize the amount of data loss ,minimize the delay during data collection and preserves the energy.

Keywords: branch energy, decentralized, energy level , lifetime, tree energy, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
7077 Effects of Data Correlation in a Sparse-View Compressive Sensing Based Image Reconstruction

Authors: Sajid Abbas, Joon Pyo Hong, Jung-Ryun Lee, Seungryong Cho

Abstract:

Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.

Keywords: Computed tomography, Computed laminography, Compressive sending, Low-dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
7076 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: Real-Time Spatial Big Data, Quality Of Service, Vertical partitioning, Horizontal partitioning, Matching algorithm, Hamming distance, Stream query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
7075 Numerical and Experimental Investigation of Airflow inside a Car Cabin

Authors: Mokhtar Djeddou, Amine Mehel, Georges Fokoua, Anne Tanière, Patrick Chevrier

Abstract:

Commuters’ exposure to air pollution, particularly to particle matter inside vehicles, is a significant health issue. Assessing particle concentrations and characterizing their distribution is an important first step in understanding and proposing solutions to improve car cabin air quality. It is known that particle dynamics is intimately driven by particle-turbulence interactions. In order to analyze and model pollutants distribution inside car cabins, it is crucial to examine first the single-phase flow topology and its associated turbulence characteristics. Within this context, Computational Fluid Dynamics (CFD) simulations were conducted to model airflow inside a full-scale car cabin using Reynolds Averaged Navier-Stokes (RANS) approach combined with the first order Realizable k-ε model to close the RANS equations. To assess the numerical model, a campaign of velocity field measurements at different locations in the front and back of the car cabin has been carried out using hot-wire anemometry technique. Comparison between numerical and experimental results shows a good agreement of velocity profiles. Additionally, visualization of streamlines shows the formation of jet flow developing out of the dashboard air vents and the formation of large vortex structures, particularly between the front and back-seat compartments. These vortical structures could play a key role in the accumulation and clustering of particles in a turbulent flow.

Keywords: Car cabin, CFD, hot-wire anemometry, vortical flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 468
7074 The Impact of the General Data Protection Regulation on Human Resources Management in Schools

Authors: Alexandra Aslanidou

Abstract:

The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.

Keywords: General data protection regulation, human resource management, educational system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
7073 Data Mining for Cancer Management in Egypt Case Study: Childhood Acute Lymphoblastic Leukemia

Authors: Nevine M. Labib, Michael N. Malek

Abstract:

Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily comprehensible to humans. One of the useful applications in Egypt is the Cancer management, especially the management of Acute Lymphoblastic Leukemia or ALL, which is the most common type of cancer in children. This paper discusses the process of designing a prototype that can help in the management of childhood ALL, which has a great significance in the health care field. Besides, it has a social impact on decreasing the rate of infection in children in Egypt. It also provides valubale information about the distribution and segmentation of ALL in Egypt, which may be linked to the possible risk factors. Undirected Knowledge Discovery is used since, in the case of this research project, there is no target field as the data provided is mainly subjective. This is done in order to quantify the subjective variables. Therefore, the computer will be asked to identify significant patterns in the provided medical data about ALL. This may be achieved through collecting the data necessary for the system, determimng the data mining technique to be used for the system, and choosing the most suitable implementation tool for the domain. The research makes use of a data mining tool, Clementine, so as to apply Decision Trees technique. We feed it with data extracted from real-life cases taken from specialized Cancer Institutes. Relevant medical cases details such as patient medical history and diagnosis are analyzed, classified, and clustered in order to improve the disease management.

Keywords: Data Mining, Decision Trees, Knowledge Discovery, Leukemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
7072 A Data Warehouse System to Help Assist Breast Cancer Screening in Diagnosis, Education and Research

Authors: Souâd Demigha

Abstract:

Early detection of breast cancer is considered as a major public health issue. Breast cancer screening is not generalized to the entire population due to a lack of resources, staff and appropriate tools. Systematic screening can result in a volume of data which can not be managed by present computer architecture, either in terms of storage capabilities or in terms of exploitation tools. We propose in this paper to design and develop a data warehouse system in radiology-senology (DWRS). The aim of such a system is on one hand, to support this important volume of information providing from multiple sources of data and images and for the other hand, to help assist breast cancer screening in diagnosis, education and research.

Keywords: Breast cancer screening, data warehouse, diagnosis, education, research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714
7071 Data Security in a DApp Twitter Alike on Web 3.0 With Blockchain Based Technology

Authors: Vishal Awasthi, Tanya Soni, Vigya Awasthi, Swati Singh, Shivali Verma

Abstract:

There is a growing demand for a network that grants a high level of data security and confidentiality. For this reason, the semantic web was introduced, which allows data to be shared and reused across applications while safeguarding users privacy and user’s will grab back control of their data. The earlier Web 1.0 and Web 2.0 versions were built on client-server architecture, in  which there was the risk of data theft and unconsented sale of user data. A decentralized version, Known as Web 3.0, that is mostly built on blockchain technology was interjected to resolve these issues. The recent research focuses on blockchain technology, deals with privacy, security, transparency, and innovation of decentralized applications (DApps), e.g. a Twitter Clone, Whatsapp clone. In this paper the Twitter Alike built on the Ethereum blockchain will replace traditional techniques with improved latency, throughput, and data ownership. The central principle of this DApp is smart contract implemented using Solidity which is an object- oriented and highlevel language. Consequently, this will provide a better Quality Services, high data security, and integrity for both present and future internet technologies.

Keywords: Blockchain, DApps, Ethereum, Semantic Web, Smart Contract, Solidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330
7070 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Authors: Faisal Aburub, Wael Hadi

Abstract:

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Keywords: Classification, data mining, evaluation measures, groundwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
7069 Data Mining on the Router Logs for Statistical Application Classification

Authors: M. Rahmati, S.M. Mirzababaei

Abstract:

With the advance of information technology in the new era the applications of Internet to access data resources has steadily increased and huge amount of data have become accessible in various forms. Obviously, the network providers and agencies, look after to prevent electronic attacks that may be harmful or may be related to terrorist applications. Thus, these have facilitated the authorities to under take a variety of methods to protect the special regions from harmful data. One of the most important approaches is to use firewall in the network facilities. The main objectives of firewalls are to stop the transfer of suspicious packets in several ways. However because of its blind packet stopping, high process power requirements and expensive prices some of the providers are reluctant to use the firewall. In this paper we proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. By discriminating these data, an administrator may take an approach action against the user. This method is very fast and can be used simply in adjacent with the Internet routers.

Keywords: Data Mining, Firewall, Optimization, Packetclassification, Statistical Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
7068 Improvement of Data Transfer over Simple Object Access Protocol (SOAP)

Authors: Khaled Ahmed Kadouh, Kamal Ali Albashiri

Abstract:

This paper presents a designed algorithm involves improvement of transferring data over Simple Object Access Protocol (SOAP). The aim of this work is to establish whether using SOAP in exchanging XML messages has any added advantages or not. The results showed that XML messages without SOAP take longer time and consume more memory, especially with binary data.

Keywords: JAX-WS, SMTP, SOAP, Web service, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
7067 Numerical Simulations of Flood and Inundation in Jobaru River Basin Using Laser Profiler Data

Authors: Hiroto Nakashima, Toshihiro Morita, Koichiro Ohgushi

Abstract:

Laser Profiler (LP) data from aerial laser surveys have been increasingly used as topographical inputs to numerical simulations of flooding and inundation in river basins. LP data has great potential for reproducing topography, but its effective usage has not yet been fully established. In this study, flooding and inundation are simulated numerically using LP data for the Jobaru River basin of Japan’s Saga Plain. The analysis shows that the topography is reproduced satisfactorily in the computational domain with urban and agricultural areas requiring different grid sizes. A 2-D numerical simulation shows that flood flow behavior changes as grid size is varied.

Keywords: LP data, numerical simulation, topological analysis, mesh size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
7066 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: Access algorithm, channels division, collisions avoidance, wavelength division multiplexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
7065 A Testbed for the Experiments Performed in Missing Value Treatments

Authors: Dias de J. C. Lilian, Lobato M. F. Fábio, de Santana L. Ádamo

Abstract:

The occurrence of missing values in database is a serious problem for Data Mining tasks, responsible for degrading data quality and accuracy of analyses. In this context, the area has shown a lack of standardization for experiments to treat missing values, introducing difficulties to the evaluation process among different researches due to the absence in the use of common parameters. This paper proposes a testbed intended to facilitate the experiments implementation and provide unbiased parameters using available datasets and suited performance metrics in order to optimize the evaluation and comparison between the state of art missing values treatments.

Keywords: Data imputation, data mining, missing values treatment, testbed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
7064 Data-Reusing Adaptive Filtering Algorithms with Adaptive Error Constraint

Authors: Young-Seok Choi

Abstract:

We present a family of data-reusing and affine projection algorithms. For identification of a noisy linear finite impulse response channel, a partial knowledge of a channel, especially noise, can be used to improve the performance of the adaptive filter. Motivated by this fact, the proposed scheme incorporates an estimate of a knowledge of noise. A constraint, called the adaptive noise constraint, estimates an unknown information of noise. By imposing this constraint on a cost function of data-reusing and affine projection algorithms, a cost function based on the adaptive noise constraint and Lagrange multiplier is defined. Minimizing the new cost function leads to the adaptive noise constrained (ANC) data-reusing and affine projection algorithms. Experimental results comparing the proposed schemes to standard data-reusing and affine projection algorithms clearly indicate their superior performance.

Keywords: Data-reusing, affine projection algorithm, error constraint, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
7063 Balancing Strategies for Parallel Content-based Data Retrieval Algorithms in a k-tree Structured Database

Authors: Radu Dobrescu, Matei Dobrescu, Daniela Hossu

Abstract:

The paper proposes a unified model for multimedia data retrieval which includes data representatives, content representatives, index structure, and search algorithms. The multimedia data are defined as k-dimensional signals indexed in a multidimensional k-tree structure. The benefits of using the k-tree unified model were demonstrated by running the data retrieval application on a six networked nodes test bed cluster. The tests were performed with two retrieval algorithms, one that allows parallel searching using a single feature, the second that performs a weighted cascade search for multiple features querying. The experiments show a significant reduction of retrieval time while maintaining the quality of results.

Keywords: balancing strategies, multimedia databases, parallelprocessing, retrieval algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
7062 Handling Mobility using Virtual Grid in Static Wireless Sensor Networks

Authors: T.P. Sharma

Abstract:

Querying a data source and routing data towards sink becomes a serious challenge in static wireless sensor networks if sink and/or data source are mobile. Many a times the event to be observed either moves or spreads across wide area making maintenance of continuous path between source and sink a challenge. Also, sink can move while query is being issued or data is on its way towards sink. In this paper, we extend our already proposed Grid Based Data Dissemination (GBDD) scheme which is a virtual grid based topology management scheme restricting impact of movement of sink(s) and event(s) to some specific cells of a grid. This obviates the need for frequent path modifications and hence maintains continuous flow of data while minimizing the network energy consumptions. Simulation experiments show significant improvements in network energy savings and average packet delay for a packet to reach at sink.

Keywords: Mobility in WSNs, virtual grid, GBDD, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
7061 Experimental Modal Analysis and Model Validation of Antenna Structures

Authors: B.R. Potgieter, G. Venter

Abstract:

Numerical design optimization is a powerful tool that can be used by engineers during any stage of the design process. There are many different applications for structural optimization. A specific application that will be discussed in the following paper is experimental data matching. Data obtained through tests on a physical structure will be matched with data from a numerical model of that same structure. The data of interest will be the dynamic characteristics of an antenna structure focusing on the mode shapes and modal frequencies. The structure used was a scaled and simplified model of the Karoo Array Telescope-7 (KAT-7) antenna structure. This kind of data matching is a complex and difficult task. This paper discusses how optimization can assist an engineer during the process of correlating a finite element model with vibration test data.

Keywords: Finite Element Model (FEM), Karoo Array Telescope(KAT-7), modal frequencies, mode shapes, optimization, shape optimization, size optimization, vibration tests

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
7060 Compressed Suffix Arrays to Self-Indexes Based on Partitioned Elias-Fano

Authors: Guo Wenyu, Qu Youli

Abstract:

A practical and simple self-indexing data structure, Partitioned Elias-Fano (PEF) - Compressed Suffix Arrays (CSA), is built in linear time for the CSA based on PEF indexes. Moreover, the PEF-CSA is compared with two classical compressed indexing methods, Ferragina and Manzini implementation (FMI) and Sad-CSA on different type and size files in Pizza & Chili. The PEF-CSA performs better on the existing data in terms of the compression ratio, count, and locates time except for the evenly distributed data such as proteins data. The observations of the experiments are that the distribution of the φ is more important than the alphabet size on the compression ratio. Unevenly distributed data φ makes better compression effect, and the larger the size of the hit counts, the longer the count and locate time.

Keywords: Compressed suffix array, self-indexing, partitioned Elias-Fano, PEF-CSA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
7059 A Decision Matrix for the Evaluation of Triplestores for Use in a Virtual Research Environment

Authors: Tristan O’Neill, Trina Myers, Jarrod Trevathan

Abstract:

The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for cross-domain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.

Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704