Search results for: minimum root mean square (RMS) error matching algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5697

Search results for: minimum root mean square (RMS) error matching algorithm

807 A Real Time Collision Avoidance Algorithm for Mobile Robot based on Elastic Force

Authors: Kyung Hyun, Choi, Minh Ngoc, Nong, M. Asif Ali, Rehmani

Abstract:

This present paper proposes the modified Elastic Strip method for mobile robot to avoid obstacles with a real time system in an uncertain environment. The method deals with the problem of robot in driving from an initial position to a target position based on elastic force and potential field force. To avoid the obstacles, the robot has to modify the trajectory based on signal received from the sensor system in the sampling times. It was evident that with the combination of Modification Elastic strip and Pseudomedian filter to process the nonlinear data from sensor uncertainties in the data received from the sensor system can be reduced. The simulations and experiments of these methods were carried out.

Keywords: Collision avoidance, Avoidance obstacle, Elastic Strip, Real time collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
806 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation

Authors: Sun Lim, Il-Kyun Jung

Abstract:

This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.

Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
805 Enhanced Approaches to Rectify the Noise, Illumination and Shadow Artifacts

Authors: M. Sankari, C. Meena

Abstract:

Enhancing the quality of two dimensional signals is one of the most important factors in the fields of video surveillance and computer vision. Usually in real-life video surveillance, false detection occurs due to the presence of random noise, illumination and shadow artifacts. The detection methods based on background subtraction faces several problems in accurately detecting objects in realistic environments: In this paper, we propose a noise removal algorithm using neighborhood comparison method with thresholding. The illumination variations correction is done in the detected foreground objects by using an amalgamation of techniques like homomorphic decomposition, curvelet transformation and gamma adjustment operator. Shadow is removed using chromaticity estimator with local relation estimator. Results are compared with the existing methods and prove as high robustness in the video surveillance.

Keywords: Chromaticity Estimator, Curvelet Transformation, Denoising, Gamma correction, Homomorphic, Neighborhood Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
804 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator

Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Yong Kweon Suh

Abstract:

Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.

Keywords: Environmental industry, Separator, CFD, Fine aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
803 Prediction of Phenolic Compound Migration Process through Soil Media using Artificial Neural Network Approach

Authors: Supriya Pal, Kalyan Adhikari, Somnath Mukherjee, Sudipta Ghosh

Abstract:

This study presents the application of artificial neural network for modeling the phenolic compound migration through vertical soil column. A three layered feed forward neural network with back propagation training algorithm was developed using forty eight experimental data sets obtained from laboratory fixed bed vertical column tests. The input parameters used in the model were the influent concentration of phenol(mg/L) on the top end of the soil column, depth of the soil column (cm), elapsed time after phenol injection (hr), percentage of clay (%), percentage of silt (%) in soils. The output of the ANN was the effluent phenol concentration (mg/L) from the bottom end of the soil columns. The ANN predicted results were compared with the experimental results of the laboratory tests and the accuracy of the ANN model was evaluated.

Keywords: Modeling, Neural Networks, Phenol, Soil media

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
802 Dynamic Fast Tracing and Smoothing Technique for Geiger-Muller Dosimeter

Authors: M. Ebrahimi Shohani, S. M. Taheri, S. M. Golgoun

Abstract:

Environmental radiation dosimeter is a kind of detector that measures the dose of the radiation area. Dosimeter registers the radiation and converts it to the dose according to the calibration parameters. The limit of a dose is different at each radiation area and this limit should be notified and reported to the user and health physics department. The stochastic nature of radiation is the reason for the fluctuation of any gamma detector dosimetry. In this research we investigated Geiger-Muller type of dosimeter and tried to improve the dose measurement. Geiger-Muller dosimeter is a counter that converts registered radiation to the dose. Therefore, for better data analysis, it is necessary to apply an algorithm to smooth statistical variations of registered radiation. We proposed a method to smooth these fluctuations much more and also proposed a dynamic way to trace rapid changes of radiations. Results show that our method is fast and reliable method in comparison the traditional method.

Keywords: Geiger-Muller, radiation detection, smoothing algorithms, dosimeter, dose calculation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 465
801 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination

Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini

Abstract:

This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.

Keywords: Impersonation, image registration, incrimination, object detection, threshold evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
800 An Optimized Virtual Scheme for Reducing Collisions in MAC Layer

Authors: M. Sivakumar, S. Saravanan

Abstract:

The main function of Medium Access Control (MAC) is to share the channel efficiently between all nodes. In the real-time scenario, there will be certain amount of wastage in bandwidth due to back-off periods. More bandwidth will be wasted in idle state if the back-off period is very high and collision may occur if the back-off period is small. So, an optimization is needed for this problem. The main objective of the work is to reduce delay due to back-off period thereby reducing collision and increasing throughput. Here a method, called the virtual back-off algorithm (VBA) is used to optimize the back-off period and thereby it increases throughput and reduces collisions. The main idea is to optimize the number of transmission for every node. A counter is introduced at each node to implement this idea. Here counter value represents the sequence number. VBA is classified into two types VBA with counter sharing (VBA-CS) and VBA with no counter sharing (VBA-NCS). These two classifications of VBA are compared for various parameters. Simulation is done in NS-2 environment. The results obtained are found to be promising. 

Keywords: VBA, sequence number, counter, back-off period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
799 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476
798 Smart Grid Simulator

Authors: Andrei Ursachi, Dorin Bordeasu

Abstract:

The Smart Grid Simulator is a computer software based on advance algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy factures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that supports the discussion and implementation of the system.

Keywords: Applied Science, Renewable energy sources, Smart Grid, Sustainable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3107
797 Selective Forwarding Attack and Its Detection Algorithms: A Review

Authors: Sushil Sarwa, Rajeev Kumar

Abstract:

The wireless mesh networks (WMNs) are emerging technology in wireless networking as they can serve large scale high speed internet access. Due to its wireless multi-hop feature, wireless mesh network is prone to suffer from many attacks, such as denial of service attack (DoS). We consider a special case of DoS attack which is selective forwarding attack (a.k.a. gray hole attack). In such attack, a misbehaving mesh router selectively drops the packets it receives rom its predecessor mesh router. It is very hard to detect that packet loss is due to medium access collision, bad channel quality or because of selective forwarding attack. In this paper, we present a review of detection algorithms of selective forwarding attack and discuss their advantage & disadvantage. Finally we conclude this paper with open research issues and challenges.

Keywords: CAD algorithm, CHEMAS, selective forwarding attack, watchdog & pathrater, wireless mesh network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2795
796 Exploration of Sweet Potato Cultivar Markets Availability in North West Province, South Africa

Authors: V. M. Mmbengwa, J. R. M. Mabuso, C. P. Du Plooy, S. Laurrie, H. D. van Schalkwyk

Abstract:

Sweet potato products are necessary for the provision of essential nutrients in every household, regardless of their poverty status. Their consumption appears to be highly influenced by socioeconomic factors, such as malnutrition, food insecurity and unemployment. Therefore, market availability is crucial for these cultivars to resolve some of the socio-economic factors. The aim of the study was to investigate market availability of sweet potato cultivars in the North West Province. In this study, both qualitative and quantitative research methodologies were used. Qualitative methodology was used to explain the quantitative outcomes of the variables. On the other hand, quantitative results were used to test the hypothesis. The study used SPSS software to analyse the data. Crosstabulation and Chi-square statistics were used to obtain the descriptive and inferential analyses, respectively. The study found that the Blesbok cultivar is dominating the markets of the North West Province, with the Monate cultivar dominating in the Bojanala Platinum (75%) and Dr Ruth Segomotsi Mompati (25%) districts. It is also found that a unit increase in the supply of sweet potato cultivars in both local and district municipal markets is accompanied by a reduced demand of 28% and 33% at district and local markets, respectively. All these results were found to be significant at p<0.05. The results further revealed that in four out of nine local municipality markets, the Blesbok cultivar seems to be solely available in those four local municipal markets of North West Province. It can be concluded that Blesbok, relative to other cultivars, is the most commercialised sweet potato variety and that consumers across this Province are highly aware of it. For other cultivars to assume market prominence in this Province, a well-designed marketing campaign for creating awareness may be required. This campaign may be based on nutritional advantages of different cultivars, of which Blesbok is relatively inferior, compared to orange-fleshed sweet potato varieties.

Keywords: Cultivar, malnutrition, markets, sweet potato.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
795 Design Application Procedures of 15 Storied 3D Reinforced Concrete Shear Wall-Frame Structure

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This paper presents the design application and reinforcement detailing of 15 storied reinforced concrete shear wall-frame structure based on linear static analysis. Databases are generated for section sizes based on automated structural optimization method utilizing Active-set Algorithm in MATLAB platform. The design constraints of allowable section sizes, capacity criteria and seismic provisions for static loads, combination of gravity and lateral loads are checked and determined based on ASCE 7-10 documents and ACI 318-14 design provision. The result of this study illustrates the efficiency of proposed method, and is expected to provide a useful reference in designing of RC shear wall-frame structures.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
794 Digital Automatic Gain Control Integrated on WLAN Platform

Authors: Emilija Miletic, Milos Krstic, Maxim Piz, Michael Methfessel

Abstract:

In this work we present a solution for DAGC (Digital Automatic Gain Control) in WLAN receivers compatible to IEEE 802.11a/g standard. Those standards define communication in 5/2.4 GHz band using Orthogonal Frequency Division Multiplexing OFDM modulation scheme. WLAN Transceiver that we have used enables gain control over Low Noise Amplifier (LNA) and a Variable Gain Amplifier (VGA). The control over those signals is performed in our digital baseband processor using dedicated hardware block DAGC. DAGC in this process is used to automatically control the VGA and LNA in order to achieve better signal-to-noise ratio, decrease FER (Frame Error Rate) and hold the average power of the baseband signal close to the desired set point. DAGC function in baseband processor is done in few steps: measuring power levels of baseband samples of an RF signal,accumulating the differences between the measured power level and actual gain setting, adjusting a gain factor of the accumulation, and applying the adjusted gain factor the baseband values. Based on the measurement results of RSSI signal dependence to input power we have concluded that this digital AGC can be implemented applying the simple linearization of the RSSI. This solution is very simple but also effective and reduces complexity and power consumption of the DAGC. This DAGC is implemented and tested both in FPGA and in ASIC as a part of our WLAN baseband processor. Finally, we have integrated this circuit in a compact WLAN PCMCIA board based on MAC and baseband ASIC chips designed from us.

Keywords: WLAN, AGC, RSSI, baseband processor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3947
793 Modelling of Multi-Agent Systems for the Scheduling of Multi-EV Charging from Power Limited Sources

Authors: Manan’Iarivo Rasolonjanahary, Chris Bingham, Nigel Schofield, Masoud Bazargan

Abstract:

This paper presents the research and application of model predictive scheduled charging of electric vehicles (EV) subject to limited available power resource. To focus on algorithm and operational characteristics, the EV interface to the source is modelled as a battery state equation during the charging operation. The researched methods allow for the priority scheduling of EV charging in a multi-vehicle regime and when subject to limited source power availability. Priority attribution for each connected EV is described. The validity of the developed methodology is shown through the simulation of different scenarios of charging operation of multiple connected EVs including non-scheduled and scheduled operation with various numbers of vehicles. Performance of the developed algorithms is also reported with the recommendation of the choice of suitable parameters.

Keywords: Model predictive control, non-scheduled, power limited sources, scheduled and stop-start battery charging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
792 Concept Abduction in Description Logics with Cardinality Restrictions

Authors: Viet-Hoang Vu, Nhan Le-Thanh

Abstract:

Recently the usefulness of Concept Abduction, a novel non-monotonic inference service for Description Logics (DLs), has been argued in the context of ontology-based applications such as semantic matchmaking and resource retrieval. Based on tableau calculus, a method has been proposed to realize this reasoning task in ALN, a description logic that supports simple cardinality restrictions as well as other basic constructors. However, in many ontology-based systems, the representation of ontology would require expressive formalisms for capturing domain-specific constraints, this language is not sufficient. In order to increase the applicability of the abductive reasoning method in such contexts, we would like to present in the scope of this paper an extension of the tableaux-based algorithm for dealing with concepts represented inALCQ, the description logic that extends ALN with full concept negation and quantified number restrictions.

Keywords: Abductive reasoning, description logics, semantic matchmaking, non-monotonic inference, tableaux-based method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
791 Genetic-based Anomaly Detection in Logs of Process Aware Systems

Authors: Hanieh Jalali, Ahmad Baraani

Abstract:

Nowaday-s, many organizations use systems that support business process as a whole or partially. However, in some application domains, like software development and health care processes, a normative Process Aware System (PAS) is not suitable, because a flexible support is needed to respond rapidly to new process models. On the other hand, a flexible Process Aware System may be vulnerable to undesirable and fraudulent executions, which imposes a tradeoff between flexibility and security. In order to make this tradeoff available, a genetic-based anomaly detection model for logs of Process Aware Systems is presented in this paper. The detection of an anomalous trace is based on discovering an appropriate process model by using genetic process mining and detecting traces that do not fit the appropriate model as anomalous trace; therefore, when used in PAS, this model is an automated solution that can support coexistence of flexibility and security.

Keywords: Anomaly Detection, Genetic Algorithm, ProcessAware Systems, Process Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
790 Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier

Authors: I. Omerhodzic, S. Avdakovic, A. Nuhanovic, K. Dizdarevic

Abstract:

In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently.

Keywords: Epilepsy, EEG, Wavelet transform, Energydistribution, Neural Network, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
789 Dynamic Construction Site Layout Using Ant Colony Optimization

Authors: Y. Abdelrazig

Abstract:

Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.

Keywords: Construction site layout, optimization, ant colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123
788 The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem

Authors: Meng-Hui Chen, Pei-Chann Chang, Wei-Hsiu Huang

Abstract:

Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.

Keywords: Artificial Immune System, Clonal Selection, Immune Response, Permutation Flow-shop Scheduling Problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
787 Concepts Extraction from Discharge Notes using Association Rule Mining

Authors: Basak Oguz Yolcular

Abstract:

A large amount of valuable information is available in plain text clinical reports. New techniques and technologies are applied to extract information from these reports. In this study, we developed a domain based software system to transform 600 Otorhinolaryngology discharge notes to a structured form for extracting clinical data from the discharge notes. In order to decrease the system process time discharge notes were transformed into a data table after preprocessing. Several word lists were constituted to identify common section in the discharge notes, including patient history, age, problems, and diagnosis etc. N-gram method was used for discovering terms co-Occurrences within each section. Using this method a dataset of concept candidates has been generated for the validation step, and then Predictive Apriori algorithm for Association Rule Mining (ARM) was applied to validate candidate concepts.

Keywords: association rule mining, otorhinolaryngology, predictive apriori, text mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
786 3A Distributed Method Algorithm for Exact Side Load Managing Smart Grid Using LABVIEW

Authors: N. Ravi Kumar, R. Kamalakannan

Abstract:

The advancement of hybrid energy resources such as solar and wind power leading to the emergence of customer owned grid. It provides an opportunity to regulars to obtain low energy costs as well as enabling the power supplier to regulate the utility grid. There is a need to develop smart systems that will automatically submit energy demand schedule and monitors energy price signals in real-time without the prompt of customers. In this paper, a demand side energy management for a grid connected household and also smart preparation of electrical appliance have been presented. It also reduces electricity bill for the consumers in the grid. In addition to this, when production is high, the surplus energy fashioned in the customer owned grid is given to main grid or neighboring micro grids. The simulation of the entire system is presented using LabVIEW software.

Keywords: Distributed renewable energy resource, power storage devices, scheduling, smart meters, smart micro grid, electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
785 Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN

Authors: Musa H. Arslan, Murat Ceylan, Tayfun Koyuncu

Abstract:

In this study, an Artificial Neural Network (ANN) analytical method has been developed for analyzing earthquake performances of the Reinforced Concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code-2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%.

Keywords: Artificial neural network, earthquake, performance, reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661
784 The Optimized Cascade PI Controllers of the Generator Control Unit in the Aircraft Power System

Authors: W. Chayinthu, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

This paper presents the optimal controller design of the generator control unit in the aircraft power system. The adaptive tabu search technique is applied to tune the controller parameters until the best terminal output voltage of generator is achieved. The output response from the system with the controllers designed by the proposed technique is compared with those from the conventional method. The transient simulations using the commercial software package show that the controllers designed from the adaptive tabu search algorithm can provide the better output performance compared with the result from the classical method. The proposed design technique is very flexible and useful for electrical aircraft engineers.

Keywords: Cascade PI controllers, DQ method, Adaptive tabusearch, Generator control unit, Aircraft power system, Modeling, Simulation, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
783 A Post Processing Method for Quantum Prime Factorization Algorithm based on Randomized Approach

Authors: Mir Shahriar Emami, Mohammad Reza Meybodi

Abstract:

Prime Factorization based on Quantum approach in two phases has been performed. The first phase has been achieved at Quantum computer and the second phase has been achieved at the classic computer (Post Processing). At the second phase the goal is to estimate the period r of equation xrN ≡ 1 and to find the prime factors of the composite integer N in classic computer. In this paper we present a method based on Randomized Approach for estimation the period r with a satisfactory probability and the composite integer N will be factorized therefore with the Randomized Approach even the gesture of the period is not exactly the real period at least we can find one of the prime factors of composite N. Finally we present some important points for designing an Emulator for Quantum Computer Simulation.

Keywords: Quantum Prime Factorization, RandomizedAlgorithms, Quantum Computer Simulation, Quantum Computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
782 Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps

Authors: Engin Yesil, Leon Urbas

Abstract:

Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.

Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
781 A Framework for Urdu Language Translation using LESSA

Authors: Imran Sarwar Bajwa

Abstract:

Internet is one of the major sources of information for the person belonging to almost all the fields of life. Major language that is used to publish information on internet is language. This thing becomes a problem in a country like Pakistan, where Urdu is the national language. Only 10% of Pakistan mass can understand English. The reason is millions of people are deprived of precious information available on internet. This paper presents a system for translation from English to Urdu. A module LESSA is used that uses a rule based algorithm to read the input text in English language, understand it and translate it into Urdu language. The designed approach was further incorporated to translate the complete website from English language o Urdu language. An option appears in the browser to translate the webpage in a new window. The designed system will help the millions of users of internet to get benefit of the internet and approach the latest information and knowledge posted daily on internet.

Keywords: Natural Language Translation, Text Understanding, Knowledge extraction, Text Processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665
780 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS

Authors: S. A. Naeini, A. Khalili

Abstract:

Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.

Keywords: Settlement, subway line, FLAC3D, ANFIS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
779 Numerical Simulation of the Dynamic Behavior of a LaNi5 Water Pumping System

Authors: Miled Amel, Ben Maad Hatem, Askri Faouzi, Ben Nasrallah Sassi

Abstract:

Metal hydride water pumping system uses hydrogen as working fluid to pump water for low head and high discharge. The principal operation of this pump is based on the desorption of hydrogen at high pressure and its absorption at low pressure by a metal hydride. This work is devoted to study a concept of the dynamic behavior of a metal hydride pump using unsteady model and LaNi5 as hydriding alloy. This study shows that with MHP, it is possible to pump 340l/kg-cycle of water in 15 000s using 1 Kg of LaNi5 at a desorption temperature of 360 K, a pumping head equal to 5 m and a desorption gear ratio equal to 33. This study reveals also that the error given by the steady model, using LaNi5 is about 2%.A dimensional mathematical model and the governing equations of the pump were presented to predict the coupled heat and mass transfer within the MHP. Then, a numerical simulation is carried out to present the time evolution of the specific water discharge and to test the effect of different parameters (desorption temperature, absorption temperature, desorption gear ratio) on the performance of the water pumping system (specific water discharge, pumping efficiency and pumping time). In addition, a comparison between results obtained with steady and unsteady model is performed with different hydride mass. Finally, a geometric configuration of the reactor is simulated to optimize the pumping time.

Keywords: Dynamic behavior, unsteady model, LaNi5, performance of the water pumping system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
778 Incremental Mining of Shocking Association Patterns

Authors: Eiad Yafi, Ahmed Sultan Al-Hegami, M. A. Alam, Ranjit Biswas

Abstract:

Association rules are an important problem in data mining. Massively increasing volume of data in real life databases has motivated researchers to design novel and incremental algorithms for association rules mining. In this paper, we propose an incremental association rules mining algorithm that integrates shocking interestingness criterion during the process of building the model. A new interesting measure called shocking measure is introduced. One of the main features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The incremental model that reflects the changing data and the user beliefs is attractive in order to make the over all KDD process more effective and efficient. We implemented the proposed approach and experiment it with some public datasets and found the results quite promising.

Keywords: Knowledge discovery in databases (KDD), Data mining, Incremental Association rules, Domain knowledge, Interestingness, Shocking rules (SHR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866