Search results for: genetic algorithm and observer technique.
1356 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.
Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15281355 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation
Authors: Zhichao Zhao, Yi Liu, Shunping Xiao
Abstract:
A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18031354 Palmprint Recognition by Wavelet Transform with Competitive Index and PCA
Authors: Deepti Tamrakar, Pritee Khanna
Abstract:
This manuscript presents, palmprint recognition by combining different texture extraction approaches with high accuracy. The Region of Interest (ROI) is decomposed into different frequencytime sub-bands by wavelet transform up-to two levels and only the approximate image of two levels is selected, which is known as Approximate Image ROI (AIROI). This AIROI has information of principal lines of the palm. The Competitive Index is used as the features of the palmprint, in which six Gabor filters of different orientations convolve with the palmprint image to extract the orientation information from the image. The winner-take-all strategy is used to select dominant orientation for each pixel, which is known as Competitive Index. Further, PCA is applied to select highly uncorrelated Competitive Index features, to reduce the dimensions of the feature vector, and to project the features on Eigen space. The similarity of two palmprints is measured by the Euclidean distance metrics. The algorithm is tested on Hong Kong PolyU palmprint database. Different AIROI of different wavelet filter families are also tested with the Competitive Index and PCA. AIROI of db7 wavelet filter achievs Equal Error Rate (EER) of 0.0152% and Genuine Acceptance Rate (GAR) of 99.67% on the palm database of Hong Kong PolyU.Keywords: DWT, EER, Euclidean Distance, Gabor filter, PCA, ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17401353 Fault Detection of Broken Rotor Bars Using Stator Current Spectrum for the Direct Torque Control Induction Motor
Authors: Ridha Kechida, Arezki Menacer, Abdelhamid Benakcha
Abstract:
The numerous qualities of squirrel cage induction machines enhance their use in industry. However, various faults can occur, such as stator short-circuits and rotor failures. In this paper, we use a technique based on the spectral analysis of stator current in order to detect the fault in the machine: broken rotor bars. Thus, the number effect of the breaks has been highlighted. The effect is highlighted by considering the machine controlled by the Direct Torque Control (DTC). The key to fault detection is the development of a simplified dynamic model of a squirrel cage induction motor taking account the broken bars fault and the stator current spectrum analysis (FFT).Keywords: Rotor faults, diagnosis, induction motor, DTC, statorcurrent spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31221352 Software Effort Estimation Using Soft Computing Techniques
Authors: Parvinder S. Sandhu, Porush Bassi, Amanpreet Singh Brar
Abstract:
Various models have been derived by studying large number of completed software projects from various organizations and applications to explore how project sizes mapped into project effort. But, still there is a need to prediction accuracy of the models. As Neuro-fuzzy based system is able to approximate the non-linear function with more precision. So, Neuro-Fuzzy system is used as a soft computing approach to generate model by formulating the relationship based on its training. In this paper, Neuro-Fuzzy technique is used for software estimation modeling of on NASA software project data and performance of the developed models are compared with the Halstead, Walston-Felix, Bailey-Basili and Doty Models mentioned in the literature.
Keywords: Effort Estimation, Neural-Fuzzy Model, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20761351 Control and Simulation of FOPDT Food Processes with Constraints using PI Controller
Authors: M.Y. Pua, M.C. Tan, L.W. Tan, N. Ab.Aziz, F.S. Taip
Abstract:
The most common type of controller being used in the industry is PI(D) controller which has been used since 1945 and is still being widely used due to its efficiency and simplicity. In most cases, the PI(D) controller was tuned without taking into consideration of the effect of actuator saturation. In real processes, the most common actuator which is valve will act as constraint and restrict the controller output. Since the controller is not designed to encounter saturation, the process may windup and consequently resulted in large oscillation or may become unstable. Usually, an antiwindup compensator is added to the feedback control loop to reduce the deterioration effect of integral windup. This research aims to specifically control processes with constraints. The proposed method was applied to two different types of food processes, which are blending and spray drying. Simulations were done using MATLAB and the performances of the proposed method were compared with other conventional methods. The proposed technique was able to control the processes and avoid saturation such that no anti windup compensator is needed.Keywords: constraints, food process control, first order plusdead time process, PI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20611350 Performance Evaluation of an Efficient Asynchronous Protocol for WDM Ring MANs
Authors: Peristera A. Baziana
Abstract:
The idea of the asynchronous transmission in wavelength division multiplexing (WDM) ring MANs is studied in this paper. Especially, we present an efficient access technique to coordinate the collisions-free transmission of the variable sizes of IP traffic in WDM ring core networks. Each node is equipped with a tunable transmitter and a tunable receiver. In this way, all the wavelengths are exploited for both transmission and reception. In order to evaluate the performance measures of average throughput, queuing delay and packet dropping probability at the buffers, a simulation model that assumes symmetric access rights among the nodes is developed based on Poisson statistics. Extensive numerical results show that the proposed protocol achieves apart from high bandwidth exploitation for a wide range of offered load, fairness of queuing delay and dropping events among the different packets size categories.
Keywords: Asynchronous transmission, collision avoidance, wavelength division multiplexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20931349 Cell Phone: A Vital Clue
Authors: Meenakshi Mahajan, Arun Sharma, Navendu Sharma
Abstract:
Increasing use of cell phone as a medium of human interaction is playing a vital role in solving riddles of crime as well. A young girl went missing from her home late in the evening in the month of August, 2008 when her enraged relatives and villagers physically assaulted and chased her fiancée who often frequented her home. Two years later, her mother lodged a complaint against the relatives and the villagers alleging that after abduction her daughter was either sold or killed as she had failed to trace her. On investigation, a rusted cell phone with partial visible IMEI number, clothes, bangles, human skeleton etc. recovered from abandoned well in the month of May, 2011 were examined in the lab. All hopes pinned on identity of cell phone, for only linking evidence to fix the scene of occurrence supported by call detail record (CDR) and to dispel doubts about mode of sudden disappearance or death as DNA technology did not help in establishing identity of the deceased. The conventional scientific methods were used without success and international mobile equipment identification number of the cell phone could be generated by using statistical analysis followed by online verification.
Keywords: Call detail record, Luhn algorithm, stereomicroscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19811348 Treatment of Leaden Sludge of Algiers Refinery by Electrooxidation
Authors: K. Ighilahriz, M. Taleb Ahmed, R. Maachi
Abstract:
Oil industries are responsible for most cases of contamination of our ecosystem by oil and heavy metals. They are toxic and considered carcinogenic and dangerous even when they exist in trace amounts. At Algiers refinery, production, transportation, and refining of crude oil generate considerable waste in storage tanks; these residues result from the gravitational settling. The composition of these residues is essentially a mixture of hydrocarbon and lead. We propose in this work the application of electrooxidation treatment for the leachate of the leaden sludge. The effect of pH, current density and the electrolysis time were studied, the effectiveness of the processes is evaluated by measuring the chemical oxygen demand (COD). The dissolution is the best way to mobilize pollutants from leaden mud, so we conducted leaching before starting the electrochemical treatment. The process was carried out in batch mode using graphite anode and a stainless steel cathode. The results clearly demonstrate the compatibility of the technique used with the type of pollution studied. In fact, it allowed COD removal about 80%.Keywords: Electrooxidation, leaching, leaden sludge, the oil industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7211347 Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process
Authors: Vinod Kumar, Jatinder Kumar
Abstract:
The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.Keywords: Stress, MRR, Flow, Ultrasonic Machining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28101346 High Performance VLSI Architecture of 2D Discrete Wavelet Transform with Scalable Lattice Structure
Authors: Juyoung Kim, Taegeun Park
Abstract:
In this paper, we propose a fully-utilized, block-based 2D DWT (discrete wavelet transform) architecture, which consists of four 1D DWT filters with two-channel QMF lattice structure. The proposed architecture requires about 2MN-3N registers to save the intermediate results for higher level decomposition, where M and N stand for the filter length and the row width of the image respectively. Furthermore, the proposed 2D DWT processes in horizontal and vertical directions simultaneously without an idle period, so that it computes the DWT for an N×N image in a period of N2(1-2-2J)/3. Compared to the existing approaches, the proposed architecture shows 100% of hardware utilization and high throughput rates. To mitigate the long critical path delay due to the cascaded lattices, we can apply the pipeline technique with four stages, while retaining 100% of hardware utilization. The proposed architecture can be applied in real-time video signal processing.
Keywords: discrete wavelet transform, VLSI architecture, QMF lattice filter, pipelining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17821345 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network
Authors: Siavash Asadi Ghajarloo
Abstract:
Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21741344 Investigation of Chord Protocol in Peer to Peer-Wireless Mesh Network with Mobility
Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad
Abstract:
File sharing in networks is generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. However, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.Keywords: Wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD protocol, DHT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21191343 Effectual Reversible Watermarking Method for Hide the Patient Details in Brain Tumor Image
Authors: K. Amudha, C. Nelson Kennedy Babu, S. Balu
Abstract:
The security of the medical images and its related data is the major research area which is to be concentrated in today’s era. Security in the medical image indicates that the physician may hide patients’ related data in the medical image and transfer it safely to a defined location using reversible watermarking. Many reversible watermarking methods had proposed over the decade. This paper enhances the security level in brain tumor images to hide the patient’s detail, which has to be conferred with other physician’s suggestions. The details or the information will be hidden in Non-ROI area of the image by using the block cipher algorithm. The block cipher uses different keys to extract the details that are difficult for the intruder to detect all the keys and to spot the details, which are the key advantage of this method. The ROI is the tumor area and Non-ROI is the area rest of ROI. The Non-ROI should not be spoiled in any cause and the details in the Non-ROI should be extracted correctly. The reversible watermarking method proposed in this paper performs well when compared to existing methods in the process of extraction of an original image and providing information security.Keywords: Brain tumor images, Block Cipher, Reversible watermarking, ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13371342 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.
Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261341 Retrieving Similar Segmented Objects Using Motion Descriptors
Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou
Abstract:
The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.
Keywords: Fuzzy Object, Fuzzy Image Segmentation, Motion Descriptors, MRI Imaging, Object-Based Image Retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23021340 Inverse Heat Conduction Analysis of Cooling on Run Out Tables
Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi
Abstract:
In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.
Keywords: Inverse Analysis, Function Specification, Neural Net Works, Particle Swarm, Run Out Table.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16991339 A Markov Chain Model for Load-Balancing Based and Service Based RAT Selection Algorithms in Heterogeneous Networks
Authors: Abdallah Al Sabbagh
Abstract:
Next Generation Wireless Network (NGWN) is expected to be a heterogeneous network which integrates all different Radio Access Technologies (RATs) through a common platform. A major challenge is how to allocate users to the most suitable RAT for them. An optimized solution can lead to maximize the efficient use of radio resources, achieve better performance for service providers and provide Quality of Service (QoS) with low costs to users. Currently, Radio Resource Management (RRM) is implemented efficiently for the RAT that it was developed. However, it is not suitable for a heterogeneous network. Common RRM (CRRM) was proposed to manage radio resource utilization in the heterogeneous network. This paper presents a user level Markov model for a three co-located RAT networks. The load-balancing based and service based CRRM algorithms have been studied using the presented Markov model. A comparison for the performance of load-balancing based and service based CRRM algorithms is studied in terms of traffic distribution, new call blocking probability, vertical handover (VHO) call dropping probability and throughput.Keywords: Heterogeneous Wireless Network, Markov chain model, load-balancing based and service based algorithm, CRRM algorithms, Beyond 3G network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24871338 The Effect of Increment in Simulation Samples on a Combined Selection Procedure
Authors: Mohammad H. Almomani, Rosmanjawati Abdul Rahman
Abstract:
Statistical selection procedures are used to select the best simulated system from a finite set of alternatives. In this paper, we present a procedure that can be used to select the best system when the number of alternatives is large. The proposed procedure consists a combination between Ranking and Selection, and Ordinal Optimization procedures. In order to improve the performance of Ordinal Optimization, Optimal Computing Budget Allocation technique is used to determine the best simulation lengths for all simulation systems and to reduce the total computation time. We also argue the effect of increment in simulation samples for the combined procedure. The results of numerical illustration show clearly the effect of increment in simulation samples on the proposed combination of selection procedure.Keywords: Indifference-Zone, Optimal Computing Budget Allocation, Ordinal Optimization, Ranking and Selection, Subset Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12411337 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.
Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8471336 Flux Cored Arc Welding Parameter Optimization of AISI 316L (N) Austenitic Stainless Steel
Authors: D.Katherasan, Madana Sashikant, S.Sandeep Bhat, P.Sathiya
Abstract:
Bead-on-plate welds were carried out on AISI 316L (N) austenitic stainless steel (ASS) using flux cored arc welding (FCAW) process. The bead on plates weld was conducted as per L25 orthogonal array. In this paper, the weld bead geometry such as depth of penetration (DOP), bead width (BW) and weld reinforcement (R) of AISI 316L (N) ASS are investigated. Taguchi approach is used as statistical design of experiment (DOE) technique for optimizing the selected welding input parameters. Grey relational analysis and desirability approach are applied to optimize the input parameters considering multiple output variables simultaneously. Confirmation experiment has also been conducted to validate the optimized parameters.Keywords: bead-on-plate welding, bead profiles, desirability approach, grey relational analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23981335 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.
Authors: Qasim M. Kriri
Abstract:
Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.
Keywords: Parameter linear programming, objective function, sensitivity analysis, optimize profit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29081334 Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body
Authors: R. Haoui
Abstract:
Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.
Keywords: Hypersonic flow, viscous flow, chemical kinetic, dissociation, finite volumes, frozen and non-equilibrium flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22041333 Risk Assessment of Building Information Modelling Adoption in Construction Projects
Authors: Amirhossein Karamoozian, Desheng Wu, Behzad Abbasnejad
Abstract:
Building information modelling (BIM) is a new technology to enhance the efficiency of project management in the construction industry. In addition to the potential benefits of this useful technology, there are various risks and obstacles to applying it in construction projects. In this study, a decision making approach is presented for risk assessment in BIM adoption in construction projects. Various risk factors of exerting BIM during different phases of the project lifecycle are identified with the help of Delphi method, experts’ opinions and related literature. Afterward, Shannon’s entropy and Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) are applied to derive priorities of the identified risk factors. Results indicated that lack of knowledge between professional engineers about workflows in BIM and conflict of opinions between different stakeholders are the risk factors with the highest priority.
Keywords: Risk, BIM, Shannon’s entropy, Fuzzy TOPSIS, construction projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14691332 Screened Potential in a Reverse Monte Carlo (RMC) Simulation
Authors: M. Habchi, S. M. Mesli, M. Kotbi
Abstract:
A structural study of an aqueous electrolyte whose experimental results are available. It is a solution of LiCl-6H2O type at glassy state (120K) contrasted with pure water at room temperature by means of Partial Distribution Functions (PDF) issue from neutron scattering technique. Based on these partial functions, the Reverse Monte Carlo method (RMC) computes radial and angular correlation functions which allow exploring a number of structural features of the system. The obtained curves include some artifacts. To remedy this, we propose to introduce a screened potential as an additional constraint. Obtained results show a good matching between experimental and computed functions and a significant improvement in PDFs curves with potential constraint. It suggests an efficient fit of pair distribution functions curves.Keywords: RMC simulation; Screened potential; partial and pair distribution functions; glassy and liquid state
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15261331 Novel Process Formulation of Multiple Unit Tablet of Pantoprazole
Authors: Vipin Saini, Sunil Kamboj, Suman Bala, A. Pandurangan
Abstract:
The present invention relates to multiple-unit tablet dosage forms, which is composed of several subunits (multiparticulates/pellets). Each small multiparticulate further composed of many layers. Some layer contains drug substance; others are rate controlling polymer. The resulting multiple-unit tablet dosage forms of pantoprazole were satisfactory fabricated. Pelletization technique has some advantages over coated tablet formulation. In coated tablet the coating may be damaged and a pinhole possibly formed that would result in increased release of drug in stomach and may be deactivated in stomach juices. If the coat of some pellets may be damaged that would not affect the release properties of the multiple-unit tablet. Hence they are beneficial in this aspect. The results confirmed the successful preparation of stable and bioequivalent once daily controlled release multiple-unit tablets of pantoprazole.
Keywords: Controlled release, multiple unit tablets, pantoprazole, pelletization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32571330 Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data
Authors: Cristina G. Dascâlu, Corina Dima Cozma, Elena Carmen Cotrutz
Abstract:
The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.Keywords: Data clustering, medical data, principal components analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15011329 Effect of Preheating Temperature and Chamber Pressure on the Properties of Porous NiTi Alloy Prepared by SHS Technique
Authors: Wisutmethangoon S., Denmud N., Sikong L.
Abstract:
The fabrication of porous NiTi shape memory alloys (SMAs) from elemental powder compacts was conducted by selfpropagating high temperature synthesis (SHS). Effects of the preheating temperature and the chamber pressure on the combustion characteristics as well as the final morphology and the composition of products were studied. The samples with porosity between 56.4 and 59.0% under preheating temperature in the range of 200-300°C and Ar-gas chamber pressure of 138 and 201 kPa were obtained. The pore structures were found to be dissimilar only in the samples processed with different preheating temperature. The major phase in the porous product is NiTi with small amounts of secondary phases, NiTi2 and Ni4Ti3. The preheating temperature and the chamber pressure have very little effect on the phase constituent. While the combustion temperature of the sample was notably increased by increasing the preheating temperature, they were slightly changed by varying the chamber pressure.
Keywords: Combustion synthesis, porous materials, self propagating high temperature synthesis, shape memory alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17471328 A Multiagent System for Distributed Systems Management
Authors: H. M. Kelash, H. M. Faheem, M. Amoon
Abstract:
The demand for autonomous resource management for distributed systems has increased in recent years. Distributed systems require an efficient and powerful communication mechanism between applications running on different hosts and networks. The use of mobile agent technology to distribute and delegate management tasks promises to overcome the scalability and flexibility limitations of the currently used centralized management approach. This work proposes a multiagent system that adopts mobile agents as a technology for tasks distribution, results collection, and management of resources in large-scale distributed systems. A new mobile agent-based approach for collecting results from distributed system elements is presented. The technique of artificial intelligence based on intelligent agents giving the system a proactive behavior. The presented results are based on a design example of an application operating in a mobile environment.Keywords: distributed management, distributed systems, efficiency, mobile agent, multiagent, response time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20841327 Experimental Studies on Multiphase Flow in Porous Media and Pore Wettability
Authors: Xingxun Li, Xianfeng Fan
Abstract:
Multiphase flow transport in porous medium is very common and significant in science and engineering applications. For example, in CO2 Storage and Enhanced Oil Recovery processes, CO2 has to be delivered to the pore spaces in reservoirs and aquifers. CO2 storage and enhance oil recovery are actually displacement processes, in which oil or water is displaced by CO2. This displacement is controlled by pore size, chemical and physical properties of pore surfaces and fluids, and also pore wettability. In this study, a technique was developed to measure the pressure profile for driving gas/liquid to displace water in pores. Through this pressure profile, the impact of pore size on the multiphase flow transport and displacement can be analyzed. The other rig developed can be used to measure the static and dynamic pore wettability and investigate the effects of pore size, surface tension, viscosity and chemical structure of liquids on pore wettability.
Keywords: Enhanced oil recovery, Multiphase flow, Pore size, Pore wettability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327