Search results for: neuron modeling.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2108

Search results for: neuron modeling.

1658 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems

Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.

Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
1657 Application of Spreadsheet and Queuing Network Model to Capacity Optimization in Product Development

Authors: Muhammad Marsudi, Dzuraidah Abdul Wahab, Che Hassan Che Haron

Abstract:

Modeling of a manufacturing system enables one to identify the effects of key design parameters on the system performance and as a result to make correct decision. This paper proposes a manufacturing system modeling approach using a spreadsheet model based on queuing network theory, in which a static capacity planning model and stochastic queuing model are integrated. The model was used to improve the existing system utilization in relation to product design. The model incorporates few parameters such as utilization, cycle time, throughput, and batch size. The study also showed that the validity of developed model is good enough to apply and the maximum value of relative error is 10%, far below the limit value 32%. Therefore, the model developed in this study is a valuable alternative model in evaluating a manufacturing system

Keywords: Manufacturing system, product design, spreadsheet model, utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
1656 An Empirical Analysis of the Influence of Application Experience on Working Methods of Process Modelers

Authors: A. Nielen, S. Mütze-Niewöhner, C. M. Schlick

Abstract:

In view of growing competition in the service sector, services are as much in need of modeling, analysis and improvement as business or working processes. Graphical process models are important means to capture process-related know-how for an effective management of the service process. In this contribution, a human performance analysis of process model development paying special attention to model development time and the working method was conducted. It was found that modelers with higher application experience need significantly less time for mental activities than modelers with lower application experience, spend more time on labeling graphical elements, and achieved higher process model quality in terms of activity label quality.

Keywords: Model quality, predetermined motion time system, process modeling, working method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
1655 A Comprehensive model for developing of Steer-By-Wire System

Authors: Reza Kazemi , Iman Mousavinejad

Abstract:

Steer-By-Wire ( SBW ) has several advantages of packaging flexibility , advanced vehicle control system ,and superior performance . SBW has no mechanical linkage between the steering gear and the steering column. It is possible to control the steering wheel and the front-wheel steering independently. SBW system is composed of two motors controlled by ECU. One motor in the steering wheel is to improve the driver's steering feel and the other motor in the steering linkage is to improve the vehicle maneuverability and stability. This paper shows a new approach at modeling of SBW system by Bond Graph theory. The mechanical parts , the steering wheel motor and the front wheel motor will be modeled by this theory. The work in the paper will help to guide further researches on control algorithm of the SBW system .

Keywords: Steer-By-Wire ( SBW ), Bond Graph theory, Electronic-Control-Unit ( ECU ) , Modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3652
1654 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: Multi-temporal satellite image, urban growth, Non-stationarity, stochastic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
1653 Energy Consumption and GHG Production in Railway and Road Passenger Regional Transport

Authors: Martin Kendra, Tomas Skrucany, Jozef Gnap, Jan Ponicky

Abstract:

Paper deals with the modeling and simulation of energy consumption and GHG production of two different modes of regional passenger transport – road and railway. These two transport modes use the same type of fuel – diesel. Modeling and simulation of the energy consumption in transport is often used due to calculation satisfactory accuracy and cost efficiency. Paper deals with the calculation based on EN standards and information collected from technical information from vehicle producers and characteristics of tracks. Calculation included maximal theoretical capacity of bus and train and real passenger’s measurement from operation. Final energy consumption and GHG production is calculated by using software simulation. In evaluation of the simulation is used system “well to wheel”.

Keywords: Bus, energy consumption, GHG, production, simulation, train.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
1652 Information Quality Evaluation Framework: Extending ISO 25012 Data Quality Model

Authors: Irfan Rafique, Philip Lew, Maissom Qanber Abbasi, Zhang Li

Abstract:

The world wide web coupled with the ever-increasing sophistication of online technologies and software applications puts greater emphasis on the need of even more sophisticated and consistent quality requirements modeling than traditional software applications. Web sites and Web applications (WebApps) are becoming more information driven and content-oriented raising the concern about their information quality (InQ). The consistent and consolidated modeling of InQ requirements for WebApps at different stages of the life cycle still poses a challenge. This paper proposes an approach to specify InQ requirements for WebApps by reusing and extending the ISO 25012:2008(E) data quality model. We also discuss learnability aspect of information quality for the WebApps. The proposed ISO 25012 based InQ framework is a step towards a standardized approach to evaluate WebApps InQ.

Keywords: Data Quality Model, Information learnability, Information Quality, Web applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5786
1651 Mathematical Model for Progressive Phase Distribution of Ku-band Reflectarray Antennas

Authors: M. Y. Ismail, M. Inam, A. F. M. Zain, N. Misran

Abstract:

Progressive phase distribution is an important consideration in reflectarray antenna design which is required to form a planar wave in front of the reflectarray aperture. This paper presents a detailed mathematical model in order to determine the required reflection phase values from individual element of a reflectarray designed in Ku-band frequency range. The proposed technique of obtaining reflection phase can be applied for any geometrical design of elements and is independent of number of array elements. Moreover the model also deals with the solution of reflectarray antenna design with both centre and off-set feed configurations. The theoretical modeling has also been implemented for reflectarrays constructed on 0.508mm thickness of different dielectric substrates. The results show an increase in the slope of the phase curve from 4.61°/mm to 22.35°/mm by varying the material properties.

Keywords: Mathematical modeling, Progressive phase distribution, Reflectarray antenna, Reflection phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
1650 A Computational Stochastic Modeling Formalism for Biological Networks

Authors: Werner Sandmann, Verena Wolf

Abstract:

Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.

Keywords: Computational Modeling, Biological Networks, Stochastic Models, Markov Chains, Transition Class Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
1649 Formulation, Analysis and Validation of Takagi-Sugeno Fuzzy Modeling For Robotic Monipulators

Authors: Rafael Jorge Menezes Santos, Ginalber Luiz de Oliveira Serra, Carlos César Teixeira Ferreira

Abstract:

This paper proposes a methodology for analysis of the dynamic behavior of a robotic manipulator in continuous time. Initially this system (nonlinear system) will be decomposed into linear submodels and analyzed in the context of the Linear and Parameter Varying (LPV) Systems. The obtained linear submodels, which represent the local dynamic behavior of the robotic manipulator in some operating points were grouped in a Takagi-Sugeno fuzzy structure. The obtained fuzzy model was analyzed and validated through analog simulation, as universal approximator of the robotic manipulator.

Keywords: modeling of nonlinear dynamic systems, Takagi- Sugeno fuzzy model, Linear and Parameter Varying (LPV) System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
1648 Spanning Tree Transformation of Connected Graphs into Single-Row Networks

Authors: S.L. Loh, S. Salleh, N.H. Sarmin

Abstract:

A spanning tree of a connected graph is a tree which consists the set of vertices and some or perhaps all of the edges from the connected graph. In this paper, a model for spanning tree transformation of connected graphs into single-row networks, namely Spanning Tree of Connected Graph Modeling (STCGM) will be introduced. Path-Growing Tree-Forming algorithm applied with Vertex-Prioritized is contained in the model to produce the spanning tree from the connected graph. Paths are produced by Path-Growing and they are combined into a spanning tree by Tree-Forming. The spanning tree that is produced from the connected graph is then transformed into single-row network using Tree Sequence Modeling (TSM). Finally, the single-row routing problem is solved using a method called Enhanced Simulated Annealing for Single-Row Routing (ESSR).

Keywords: Graph theory, simulated annealing, single-rowrouting and spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1647 A Robust Software for Advanced Analysis of Space Steel Frames

Authors: Viet-Hung Truong, Seung-Eock Kim

Abstract:

This paper presents a robust software package for practical advanced analysis of space steel framed structures. The pre- and post-processors of the presented software package are coded in the C++ programming language while the solver is written by using the FORTRAN programming language. A user-friendly graphical interface of the presented software is developed to facilitate the modeling process and result interpretation of the problem. The solver employs the stability functions for capturing the second-order effects to minimize modeling and computational time. Both the plastic-hinge and fiber-hinge beam-column elements are available in the presented software. The generalized displacement control method is adopted to solve the nonlinear equilibrium equations.

Keywords: Advanced analysis, beam-column, fiber-hinge, plastic hinge, steel frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
1646 Cardiovascular Modeling Software Tools in Medicine

Authors: J. Fernandez, R. Fernandez de Canete, J. Perea-Paizal, J. C. Ramos-Diaz

Abstract:

The high prevalence of cardiovascular diseases has provoked a raising interest in the development of mathematical models in order to evaluate the cardiovascular function both under physiological and pathological conditions. In this paper, a physical model of the cardiovascular system with intrinsic regulation is presented and implemented by using the object-oriented Modelica simulation software tools.  For this task, a multi-compartmental system previously validated with physiological data has been built, based on the interconnection of cardiovascular elements such as resistances, capacitances and pumping among others, by following an electrohydraulic analogy. The results obtained under both physiological and pathological scenarios provide an easy interpretative key to analyze the hemodynamic behavior of the patient. The described approach represents a valuable tool in the teaching of physiology for graduate medical and nursing students among others.

Keywords: Cardiovascular system, Modelica simulation software, physical modeling, teaching tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
1645 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems

Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi

Abstract:

This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.

Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
1644 Numerical Solution of the Equations of Salt Diffusion into the Potato Tissues

Authors: Behrouz Mosayebi Dehkordi, Frazaneh Hashemi, Ramin Mostafazadeh

Abstract:

Fick's second law equations for unsteady state diffusion of salt into the potato tissues were solved numerically. The set of equations resulted from implicit modeling were solved using Thomas method to find the salt concentration profiles in solid phase. The needed effective diffusivity and equilibrium distribution coefficient were determined experimentally. Cylindrical samples of potato were infused with aqueous NaCl solutions of 1-3% concentrations, and variations in salt concentrations of brine were determined over time. Solute concentrations profiles of samples were determined by measuring salt uptake of potato slices. For the studied conditions, equilibrium distribution coefficients were found to be dependent on salt concentrations, whereas the effective diffusivity was slightly affected by brine concentration.

Keywords: Brine, Diffusion, Diffusivity, Modeling, Potato

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
1643 MONARC: A Case Study on Simulation Analysis for LHC Activities

Authors: Ciprian Dobre

Abstract:

The scale, complexity and worldwide geographical spread of the LHC computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially by the size and global span of the major experiments, combined with the limited wide area network bandwidth available. We present the latest generation of the MONARC (MOdels of Networked Analysis at Regional Centers) simulation framework, as a design and modeling tool for large scale distributed systems applied to HEP experiments. We present simulation experiments designed to evaluate the capabilities of the current real-world distributed infrastructure to support existing physics analysis processes and the means by which the experiments bands together to meet the technical challenges posed by the storage, access and computing requirements of LHC data analysis within the CMS experiment.

Keywords: Modeling and simulation, evaluation, large scale distributed systems, LHC experiments, CMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
1642 A Goal-Driven Crime Scripting Framework

Authors: Hashem Dehghanniri

Abstract:

Crime scripting is a simple and effective crime modeling technique that aims to improve understanding of security analysts about security and crime incidents. Low-quality scripts provide a wrong, incomplete, or sophisticated understanding of the crime commission process, which oppose the purpose of their application, e.g., identifying effective and cost-efficient situational crime prevention (SCP) measures. One important and overlooked factor in generating quality scripts is the crime scripting method. This study investigates the problems within the existing crime scripting practices and proposes a crime scripting approach that contributes to generating quality crime scripts. It was validated by experienced crime scripters. This framework helps analysts develop better crime scripts and contributes to their effective application, e.g., SCP measures identification or policy-making.

Keywords: Attack modeling, crime commission process, crime script, situational crime prevention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
1641 Numerical Modeling of Determination of in situ Rock Mass Deformation Modulus Using the Plate Load Test

Authors: A. Khodabakhshi, A. Mortazavi

Abstract:

Accurate determination of rock mass deformation modulus, as an important design parameter, is one of the most controversial issues in most engineering projects. A 3D numerical model of standard plate load test (PLT) using the FLAC3D code was carried to investigate the mechanism governing the test process. Five objectives were the focus of this study. The first goal was to employ 3D modeling in the interpretation of PLT conducted at the Bazoft dam site, Iran. The second objective was to investigate the effect of displacements measuring depth from the loading plates on the calculated moduli. The magnitude of rock mass deformation modulus calculated from PLT depends on anchor depth, and in practice, this may be a cause of error in the selection of realistic deformation modulus for the rock mass. The third goal of the study was to investigate the effect of testing plate diameter on the calculated modulus. Moreover, a comparison of the calculated modulus from ISRM formula, numerical modeling and calculated modulus from the actual PLT carried out at right abutment of the Bazoft dam site was another objective of the study. Finally, the effect of plastic strains on the calculated moduli in each of the loading-unloading cycles for three loading plates was investigated. The geometry, material properties, and boundary conditions on the constructed 3D model were selected based on the in-situ conditions of PLT at Bazoft dam site. A good agreement was achieved between numerical model results and the field tests results.

Keywords: Deformation modulus, numerical model, plate loading test, rock mass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
1640 Electromagnetic Field Modeling in Human Tissue

Authors: Iliana Marinova, Valentin Mateev

Abstract:

For investigations of electromagnetic field distributions in biological structures by Finite Element Method (FEM), a method for automatic 3D model building of human anatomical objects is developed. Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Several FEM models of anatomical objects are built. Formulation using magnetic vector potential and scalar electric potential (A-V, A) is used for modeling of electromagnetic fields in human tissue objects. The developed models are suitable for investigations of electromagnetic field distributions in human tissues exposed in external fields during magnetic stimulation, defibrillation, impedance tomography etc.

Keywords: electromagnetic field, finite element method, humantissue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5295
1639 Learning Monte Carlo Data for Circuit Path Length

Authors: Namal A. Senanayake, A. Beg, Withana C. Prasad

Abstract:

This paper analyzes the patterns of the Monte Carlo data for a large number of variables and minterms, in order to characterize the circuit path length behavior. We propose models that are determined by training process of shortest path length derived from a wide range of binary decision diagram (BDD) simulations. The creation of the model was done use of feed forward neural network (NN) modeling methodology. Experimental results for ISCAS benchmark circuits show an RMS error of 0.102 for the shortest path length complexity estimation predicted by the NN model (NNM). Use of such a model can help reduce the time complexity of very large scale integrated (VLSI) circuitries and related computer-aided design (CAD) tools that use BDDs.

Keywords: Monte Carlo data, Binary decision diagrams, Neural network modeling, Shortest path length estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
1638 Impacts of Project-Overload on Innovation inside Organizations: Agent-Based Modeling

Authors: Farnaz Motamediyan Dehkordi, Anthony Thompson, Tobias Larsson

Abstract:

Market competition and a desire to gain advantages on globalized market, drives companies towards innovation efforts. Project overload is an unpleasant phenomenon, which is happening for employees inside those organizations trying to make the most efficient use of their resources to be innovative. But what are the impacts of project overload on organization-s innovation capabilities? Advanced engineering teams (AE) inside a major heavy equipment manufacturer are suffering from project overload in their quest for innovation. In this paper, Agent-based modeling (ABM) is used to examine the current reality of the company context, and of the AE team, where the opportunities and challenges for reducing the risk of project overload and moving towards innovation were identified. Project overload is more likely to stifle innovation and creativity inside teams. On the other hand, motivations on proper challenging goals are more likely to help individual to alleviate the negative aspects of low level of project overload.

Keywords: Innovation, Creativity, Project overload, Agentbased modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1637 Towards Finite Element Modeling of the Accoustics of Human Head

Authors: Maciej Paszynski, Leszek Demkowicz, Jason Kurtz

Abstract:

In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.

Keywords: finite element method, acoustics, coupled problems, biomechanics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
1636 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
1635 K-best Night Vision Devices by Multi-Criteria Mixed-Integer Optimization Modeling

Authors: Daniela I. Borissova, Ivan C. Mustakerov

Abstract:

The paper describes an approach for defining of k-best night vision devices based on multi-criteria mixed-integer optimization modeling. The parameters of night vision devices are considered as criteria that have to be optimized. Using different user preferences for the relative importance between parameters different choice of k-best devices can be defined. An ideal device with all of its parameters at their optimum is used to determine how far the particular device from the ideal one is. A procedure for evaluation of deviation between ideal solution and k-best solutions is presented. The applicability of the proposed approach is numerically illustrated using real night vision devices data. The proposed approach contributes to quality of decisions about choice of night vision devices by making the decision making process more certain, rational and efficient. 

Keywords: K-best devices, mixed-integer model, multi-criteria problem, night vision devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
1634 Modeling and Simulating of Gas Turbine Cooled Blades

Authors: А. Pashayev, D. Askerov, R. Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Modeling, Simulating, Gas Turbine, Cooled Blades.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
1633 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting

Authors: R. Behmanesh, I. Rahimi

Abstract:

recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.

Keywords: RNN, DOE, regression, control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
1632 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load

Authors: R. Ziaie Moayed, E. Ghanbari Alamouty

Abstract:

Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.

Keywords: Area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
1631 Numerical Simulation of Progressive Collapse for a Reinforced Concrete Building

Authors: Han-Soo Kim, Jae-Gyun Ahn, Hyo-Seung Ahn

Abstract:

Though nonlinear dynamic analysis using a specialized hydro-code such as AUTODYN is accurate and useful tool for progressive collapse assessment of a multi-story building subjected to blast load, it takes too much time to be applied to a practical simulation of progressive collapse of a tall building. In this paper, blast analysis of a RC frame structure using a simplified model with Reinforcement Contact technique provided in Ansys Workbench was introduced and investigated on its accuracy. Even though the simplified model has a fraction of elements of the detailed model, the simplified model with this modeling technique shows similar structural behavior under the blast load to the detailed model. The proposed modeling method can be effectively applied to blast loading progressive collapse analysis of a RC frame structure.

Keywords: Autodyn, Blast Load, Progressive Collapse, Reinforcement Contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4265
1630 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement

Authors: Yu Luan

Abstract:

The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite Element Analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.

Keywords: Artificial ear, bone conducted vibration, occlusion measurement, Finite Element Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
1629 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes

Authors: Aymen Laadhari

Abstract:

We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.

Keywords: Finite element method, Newton method, level set, Navier-Stokes, inextensible membrane, liquid drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295