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Abstract—This paper proposes a methodology for analysis of
the dynamic behavior of a robotic manipulator in continuous
time. Initially this system (nonlinear system) will be decomposed
into linear submodels and analyzed in the context of the Linear
and Parameter Varying (LPV) Systems. The obtained linear
submodels, which represent the local dynamic behavior of the
robotic manipulator in some operating points were grouped in
a Takagi-Sugeno fuzzy structure. The obtained fuzzy model was
analyzed and validated through analog simulation, as universal
approximator of the robotic manipulator.

Keywords: modeling of nonlinear dynamic systems, Takagi-
Sugeno fuzzy model, Linear and Parameter Varying (LPV)
System.

I. I NTRODUCTION

Mathematical modeling is the study of methods of devel-
opment and implementation of mathematical equations to real
systems. The development of models that adequately represent
the reality is an important task, since these mathematical
models can be used for simulation, behavior analysis, design
and control systems [1] [2] [9] [10]. Real systems are typically
nonlinear. The linear term refers to the applicability of the
Principle of Superposition. This means that: considering a
system whick is excited by the inputu1(t) produces the output
y1(t) and when excited byu2(t) produces the outputy2(t).
Thus, if such system meets the principle of superposition,
when excited byau1(t)+bu2(t), its output isay1(t)+by2(t),
being a and b possibly complex constants. Due to the pre-
dominance of nonlinear systems, an approach widely used is to
linearize such systems around the operating points. This paper
proposes a methodology to analyze the dynamic behavior
of a robotic manipulator - a nonlinear system. Initially the
system was analyzed by means of analog simulation using
the Simulink software. This procedure revealed the nonlinear
system dynamic. Then the nonlinear system was decomposed
into sub-linear models and represented in the context of Linear
and Parameters Varying - LPV. The LPV system was written
in the form of state variables and equations were obtained
from sub-models at the operation points. These equations,
represented in a matricial form, were used as consequent rule
base of Takagi-Sugeno (TS) fuzzy model. In [2], it is stated

that a fuzzy rule-based model suitable for the to aproximation
of a large class of nonlinear systems was introduced by Takagi
and Sugeno (1985). The TS model obtained for the robotic
manipulator in this paper was analyzed and validated through
analog simulation in order to demonstrate the effectiveness of
the proposed methodology to represent the nonlinear dynamic
behavior of the manipulator.

II. PROBLEM FORMULATION

In this section it will be presented concepts related to the
robotic manipulator, the nonlinear system analog simulation,
linearization in the LPV context and representation in state
space and the Takagi-Sugeno fuzzy model rule-base formula-
tion for the manipulator.

A. Robotic Manipulator

The differential equation that represents the behavior of the
manipulator is:

ml2θ̈ +Blθ̇ +mgl sin (θ) = Tc (1)

whereB represents the damping factor, i.e., it is considered
the existence of friction at the fixation point of the manipula-
tor; m is the mass;Tc is the torque applied at the manipulator
link; T is the traction on it;W is the weight andl is its length.
The angleθ is the system output, the angular position.

1) The Manipulator Analog Simulation:The analog sim-
ulation is an important tool for determining the temporal
behavior of systems. The most appropriate procedure for the
simulink block diagram structure to the analog simulation is
as follows: first isolate the derivative of higher order in the
differential equation in the first member of it and move the
other terms to the second member:

θ̈ =

(

1

ml2

)

Tc +

(

−
B

ml

)

θ̇ +
(

−
g

l

)

sin (θ) (2)

The equation (2) allows easy structuring of Simulink
blocks for the system simulation. The constants shown in
parentheses in the second member of the equation represent
the gains. The three parcels will be summed up by the sum
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block. Integrators and block of the sine function are used
to complete the structure. The constant values used for the
simalation were the following:m = 1 kg, g = 9.81m/s2,
l = 1m and B = 1 kgm2/s. In Fig. 1 it is shown the
structure at the simulink to robotic manipulator simulation:

d²(teta ) /dt²

d(teta ) /dt teta (rad)

sin(teta )

Entrada Tc

teta (graus)

Trigonometric

Function

sin

Step

Scope

Integrator 1

1

s

Integrator

1

s

Gain 3

180 /pi

Gain 2

-B/(m*l)

Gain 1

-g/l

Gain

1/(m*l*l)

Fig. 1. Block diagram for analog simulation

The scope block shows a graph which represents the system
dynamic behavior.

2) System Linearization:The nonlinearity shown in equa-
tion (1) is due to the termsin (θ), as the sine function does
not follow the superposition principle. Thus, only this term
was linearized.

A usual procedure for linearizing a characteristic such as
this is to replace the characteristic with a straight line, which
may give a reasonably accurate model in some small region of
operation [7]. So, the functionf(θ) can be written by Taylor
series around the pointθ0 as follows:

f(θ) = f(θ0) +
df

dθ

∣

∣

∣

∣

θ=θ0

(θ − θ0) +
d2f

dθ2

∣

∣

∣

∣

θ=θ0

(θ − θ0)

2!
+ ...

(3)
If θ is considered close toθ0 then the terms with higher

order derivatives can be ignored:

f(θ) ∼= f(θ0) +
df

dθ

∣

∣

∣

∣

θ=θ0

(θ − θ0) (4)

For the case of robotic manipulator modeled in equation (1)
f(θ) = sin (θ). Thus applying the result obtained in (4):

sin (θ) ∼= sin (θ) + (cos (θ0))(θ − θ0) (5)

The result of (5) provides the linearization of the function
sin (θ) around generic operating pointθ0. Following, the
equation (5) was replaced in equation (2):

θ̈ =

(

1

ml2

)

Tc +

(

−

B

ml

)

θ̇ +

(

−

g

l

)

(sin (θ0) + cos (θ0)(θ − θ0)) (6)

Then:

θ̈ =

(

1

ml2

)

Tc −

(

B

ml

)

θ̇ −

(

g

l

)

[sin (θ0)− θ0 cos (θ0)]−
g cos θ0

l
θ (7)

In Fig. 2 it is shown the nonlinear characteristic of the
function f(θ) = sin (θ) along with that an example of
linearization around the operating pointθ0 =

π

3
rad:

−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

θ

f(
θ)

Fig. 2. Nonlinear characteristic off(θ) = sin (θ) and linearization

The equation (7) represents the LPV model, i.e., a model
that is linear and varies through parameters. The follows

replacements were made through simplifications:α =
1

ml2
,

β =
B

ml
, γ =

g

l
[sin (θ0) − θ0 cos (θ0)] e δ =

g cos (θ0)

l
θ.

Thus:
θ̈ = −βθ̇ − δθ + u∗ (8)

whereu∗ = αTc − γ
3) State-Space Representation:Equation (8) was repre-

sented in the form of state variables as follows:
Let x1(t) andx2(t) be the state variables. So:

{

x1(t) = θ ⇒ ẋ1(t) = θ̇

x2(t) = θ̇ = ẋ1(t) ⇒ ẋ2(t) = θ̈
(9)

Substituting equation (9) into equation (8), (10) is obtained:
{

ẋ1(t) = x2(t)
ẋ2(t) = −βx2(t)− δx1(t) + u∗

(10)

Represented in a matricial form:














ẋ(t) =

[

0 1
−δ −β

]

x(t) +

[

0
1

]

u∗

y(t) =
[

1 0
]

x(t)

(11)

where ẋ(t) =

[

ẋ1(t)
ẋ2(t)

]

, x(t) =

[

x1(t)
x2(t)

]

and y(t) is the

system output (θ).

B. Rule Base of Takagi-Sugeno Fuzzy Model for Manipulator

The fuzzy modeling is used in complex systems, nonlinear
or partially unknown, whick usually have problems with con-
ventional techniques and classic modeling. It tries to incorpo-
rate in the model the expert’s knowledge, taking into account
that humans are capable of dealing with relatively complex
processes based on imprecise information [4][5][6][8]. Fuzzy
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systems have rules of type IF-THEN, as follows:

If <antecedent proposition> then <consequent proposition>

The types of fuzzy models are distinguished by consequent
proposition. In the Sugeno-Takagi fuzzy model (Takagi and
Sugeno, 1985), the consequent proposition is a crisp math-
ematical function of antecedent variables instead of a fuzzy
proposition. The general structure of rules in the TS model
with K rules is:

Ri : If x is Ai then yi = fi(x), i = 1, 2, 3...,K. (12)

wherex is the antecedent variable (input) andyi ∈ R is the
consequent variable (output).Ai denotes the antecedent fuzzy
set of ith rule, being defined by the membership function:

µAi
(x) : Rp

→ [0, 1] (13)

The Fig. 3 shows a fuzzy system for a generic TS model.
In this model there is no TS defuzzyfication step, since the
output is a crips mathematical function.

Fuzzifier

Input

Fuzzy
Set

Numerical
data

Numerical
data

Output

Rule Base Data Base

Knowledge Base

Fuzzy Inference Engine

Fig. 3. Fuzzy system for the general Takagi-Sugeno model

Given the structure of the TS model and the LPV model
obtained for the manipulator, it is possible to obtain the linear
submodels for each operating point and group them into
a TS fuzzy structure. The chosen operating points for the
manipulator are−90◦, −85◦, −75◦, −60◦, −45◦, −30◦, 0◦,
30◦, 45◦, 60◦, 75◦, 75◦, 85◦ e 90◦, as it is shown in Fig. 4:

Fig. 4. Operating points of the manipulator

After the calculation of linear submodels for each operating
point the following rule-base, consisting of 13 rules (K = 13)
was obtained:

R1 : If x is − 90
◦

then ẋ(t) =

[

0 1
0 −1

]

x(t) +

[

0
1

]

u1
∗

R2 : If x is − 85
◦

then ẋ(t) =

[

0 1
−0.8550 −1

]

x(t) +

[

0
1

]

u2
∗

R3 : If x is − 75
◦

then ẋ(t) =

[

0 1
−2.5390 −1

]

x(t) +

[

0
1

]

u3
∗

R4 : If x is − 60
◦

then ẋ(t) =

[

0 1
−4.9050 −1

]

x(t) +

[

0
1

]

u4
∗

R5 : If x is − 45
◦

then ẋ(t) =

[

0 1
−6.9367 −1

]

x(t) +

[

0
1

]

u5
∗

R6 : If x is − 30
◦

then ẋ(t) =

[

0 1
−8.4957 −1

]

x(t) +

[

0
1

]

u6
∗

R7 : If x is 0
◦

then ẋ(t) =

[

0 1
−9.81 −1

]

x(t) +

[

0
1

]

u7
∗

R8 : If x is 30
◦

then ẋ(t) =

[

0 1
−8.4957 −1

]

x(t) +

[

0
1

]

u7
∗

R9 : If x is 45
◦

then ẋ(t) =

[

0 1
−6.9367 −1

]

x(t) +

[

0
1

]

u7
∗

R10 : If x is 60
◦

then ẋ(t) =

[

0 1
−4.9050 −1

]

x(t) +

[

0
1

]

u7
∗

R11 : If x is 75
◦

then ẋ(t) =

[

0 1
−2.5390 −1

]

x(t) +

[

0
1

]

u7
∗

R12 : If x is 85
◦

then ẋ(t) =

[

0 1
−0.8550 −1

]

x(t) +

[

0
1

]

u7
∗

R13 : If x is 90
◦

then ẋ(t) =

[

0 1
0 −1

]

x(t) +

[

0
1

]

u7
∗

whereu1
∗ = Tc+9.81, u2

∗ = Tc+8.5043, u3
∗ = Tc+6.1522,

u4
∗ = Tc + 3.3592, u5

∗ = Tc + 1.4886, u6
∗ = Tc + 0.4567,

u7
∗ = Tc, u8

∗ = Tc − 0.4557, u9
∗ = Tc − 1.4886, u10

∗ =
Tc−3.3592, u11

∗ = Tc−6.1522, u12
∗ = Tc−8.5043, u13

∗ =
Tc − 9.81, becauseα = 1.

III. TS FUZZY MODEL FORMULATION FOR THE

MANIPULATOR

In this section it will be presented the model structure
Takagi-Sugeno fuzzy to the manipulator using the Simulink
of the Matlab. The structure allows the analog simulation of
the TS model and its comparison with the nonlinear system
so that it can be validated.
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A. Inference in TS Model

According [2], the degree of fulfillment of the antecedent
corresponds to the membership degree that is given to it, i.e,
the credit which is granted to the antecedent. The degree
of fulfillment is denoted byβi(x), it is simply equal to the
membership degree of the given inputx, i.e.,βi(x) = µAi

(x).
The inference on Takagi-Sugeno fuzzy model is given by the
simple algebraic expression:

y =

∑K
i=1 (βi(x)yi)
∑K

i=1 βi(x)
(14)

The numerator of equation (14) indicates a sum of products
between each linear submodel and its degree of activation
of the rule corresponding to the submodel. The denominator
indicates the sum of the degrees of fulfillment.

B. TS Model Simulation Structure Formulation

Once obtained the thirteen linear submodels (shown on
the rule-base already presented), and made the structuringof
membership functions, it was possible to develop completely
the Takagi-Sugeno fuzzy model for the robotic manipulator
in question. The chosen membership functions were gaussian.
The law of formation of this membership function is given by
the following expression:

f(x) = e

(

−0.5(x−c)2

σ2

)

(15)

In equation (15),e represents the Euler number,c represents
the center of the Gaussian andσ indicates the variance. As the
variance has its value increased or decreased, the curve open-
ing gets wider or narrower, respectively. The centers, for the
model in question are the operation points of the manipulator,
the variances were adjusted as the need for greater or lesser
activation of a specific rule for better efficiency of the TS
model.

The Fig. 5 shows the structure of membership functions
and linear submodels in simulink. The inputs of blocks appear
all interlinked: they are connected to the global output of the
system, so that the fuzzyfication may happen. The outputs
are connected to a sum block to generate the sum of the
degrees of fulfillment, as the denominator of equation (14).
The structure shown on the right in the figure are the linear
submodels and product blocks to implement, together with the
sum, the numerator of equation (14).

The Fig. 6 shows the general structure of linear submodels.
The input of each submodel is the torque, as shown in the
interconnection of all inputs of SLIT’s. In the same figure it
can be observed theState-Spaceblock, whose function is to
implement a linear system in state space.

The names of two of the blocks in Fig. 6 correspond to the
constantsα andγ formerly defined in this paper.
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Fig. 5. Membership Functions and linear submodels of TS model

theta _i(t)

1

gama

-C-

alpha

alpha State -Space

x' = Ax+Bu

y = Cx+Du

Add

Tc (t)

1

Fig. 6. General form of the linear submodel

The Fig. 7 shows the complete implementation of equation
(14), in simulink. This structure also allows the analog
simulation of both the TS fuzzy model and of the nonlinear
model simultaneously for validation purposes. The block
called Robotic Manipulator is a subsystem of the structure
shown in Figure 1. The input of this subsystem is the torque
and the output is the angleθ(t) (nonlinear).
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Fig. 7. Framework for TS model simulation

In the structure (Fig. 7) there is also a converter from
radians to degrees. All two outputs (nonlinear and fuzzy) are
connected to the input of this converter. The output of this
block is connected to the scope, which will show the curves
for the angles in degrees. The Fig. 8 shows a graph of the
input signal representing the torque applied to the robotic
manipulator. This is a noisy sinusoidal signal.

0 10 20 30 40 50 60 70 80 90 100
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time (seconds)

T
or

qu
e

Fig. 8. Graph of the input signal

IV. A NALISIS AND VALIDATION OF TS FUZZY MODEL OF

MANIPULATOR

The analysis and validation of Takagi-Sugeno fuzzy model
obtained for the robotic manipulator was made through analog
simulation.

A. Simulation of TS Model obtained

The structure shown in Fig. 7 was simulated several times
to obtain the values of variance of the Gaussian to generate
a coherent model. These variance values were being chosen
as the output of TS fuzzy model was closer to the output
of the nonlinear model. Once obtained all the parameters
characterizing the membership functions, it was constructed
a graph of the fuzzy sets ofx1(t):

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

−90°−85°−75° −60° −45° −30° 0° 30° 45° 60° 75° 85° 90°

Angle θ (radians)

 µ
 (

x)

Fig. 9. Fuzzy sets ofx1(t)

Fig. 9 allows to look through the membership functions
which for a given angle, several rules are activated, but with
different degrees of fulfillment. Table 1 shows the character-
ization of the membership functions showing the values of
variance for each of the operating points (centers):

Center(c) Variance(σ)

−90◦ 0.002
−85◦ 0.035
−75◦ 0.02
−60◦ 0.27
−45◦ 0.27
−30◦ 0.28
0◦ 0.25
30◦ 0.2
45◦ 0.35
60◦ 0.25
75◦ 0.13
85◦ 0.005
90◦ 0.005

TABLE I
CHARACTERIZATION OF MEMBERSHIP FUNCTIONS(GAUSSIAN)
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B. Validation of TS Fuzzy Model

After manual adjustment of membership functions of
Takagi-Sugeno fuzzy model for the manipulator through the
analog simulation of the structure shown in Fig. 7, it was
obtained as a result, the temporal response of TS model in
comparison with nonlinear model, as shown in Fig. 10:

0 10 20 30 40 50 60 70 80 90 100
−80

−60

−40

−20

0

20

40

60

80

100

Time (seconds)

A
ng

ul
ar

 P
os

iti
on

 (
de

gr
ee

s)

 

 
TS Fuzzy Model
Nonlinear Model

Fig. 10. Response of the TS model and nonlinear model

As the figure caption, the curve of the fuzzy model is shown
in dashed line. The nonlinear model curve is in continuous
line. There’s a good proximity between the two curves, indi-
cating that the TS model obtained adequately represents the
dynamic behavior of the manipulator at the operation points.

V. CONCLUSION

The methodology proposed in this paper for modeling
the robotic manipulator is adequate for modeling nonlinear
systems in general, since the Takagi-Sugeno fuzzy model has
been proven efficient in the concatenation of linear submodels
for the system global output composition. The TS model
obtained for the manipulator has a reasonable number of rules
due to on the characteristic behavior of the manipulator in the
operating point near 90◦ and -90 ◦. However, the thirteen
rules were needed to ensure the effectiveness of the model.
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