Search results for: genetic programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1289

Search results for: genetic programming

839 Representing Shared Join Points with State Charts: A High Level Design Approach

Authors: Muhammad Naveed, Muhammad Khalid Abdullah, Khalid Rashid, Hafiz Farooq Ahmad

Abstract:

Aspect Oriented Programming promises many advantages at programming level by incorporating the cross cutting concerns into separate units, called aspects. Join Points are distinguishing features of Aspect Oriented Programming as they define the points where core requirements and crosscutting concerns are (inter)connected. Currently, there is a problem of multiple aspects- composition at the same join point, which introduces the issues like ordering and controlling of these superimposed aspects. Dynamic strategies are required to handle these issues as early as possible. State chart is an effective modeling tool to capture dynamic behavior at high level design. This paper provides methodology to formulate the strategies for multiple aspect composition at high level, which helps to better implement these strategies at coding level. It also highlights the need of designing shared join point at high level, by providing the solutions of these issues using state chart diagrams in UML 2.0. High level design representation of shared join points also helps to implement the designed strategy in systematic way.

Keywords: Aspect Oriented Software Development, Shared Join Points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
838 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis

Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao

Abstract:

The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.

Keywords: Genetic algorithm, optimization, reliability, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
837 Supplier Selection by Considering Cost and Reliability

Authors: K. -H. Yang

Abstract:

Supplier selection problem is one of the important issues of supply chain problems. Two categories of methodologies include qualitative and quantitative approaches which can be applied to supplier selection problems. However, due to the complexities of the problem and lacking of reliable and quantitative data, qualitative approaches are more than quantitative approaches. This study considers operational cost and supplier’s reliability factor and solves the problem by using a quantitative approach. A mixed integer programming model is the primary analytic tool. Analyses of different scenarios with variable cost and reliability structures show that the effectiveness of this approach to the supplier selection problem.

Keywords: Mixed integer programming, quantitative approach, supplier’s reliability, supplier selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
836 Genetic Algorithm based Optimization approach for MR Dampers Fuzzy Modeling

Authors: Behnam Mehrkian, Arash Bahar, Ali Chaibakhsh

Abstract:

Magneto-rheological (MR) fluid damper is a semiactive control device that has recently received more attention by the vibration control community. But inherent hysteretic and highly nonlinear dynamics of MR fluid damper is one of the challenging aspects to employ its unique characteristics. The combination of artificial neural network (ANN) and fuzzy logic system (FLS) have been used to imitate more precisely the behavior of this device. However, the derivative-based nature of adaptive networks causes some deficiencies. Therefore, in this paper, a novel approach that employ genetic algorithm, as a free-derivative algorithm, to enhance the capability of fuzzy systems, is proposed. The proposed method used to model MR damper. The results will be compared with adaptive neuro-fuzzy inference system (ANFIS) model, which is one of the well-known approaches in soft computing framework, and two best parametric models of MR damper. Data are generated based on benchmark program by applying a number of famous earthquake records.

Keywords: Benchmark program, earthquake record filtering, fuzzy logic, genetic algorithm, MR damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
835 Reducing SAGE Data Using Genetic Algorithms

Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang

Abstract:

Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.

Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
834 Aspect based Reusable Synchronization Schemes

Authors: Nathar Shah

Abstract:

Concurrency and synchronization are becoming big issues as every new PC comes with multi-core processors. A major reason for Object-Oriented Programming originally was to enable easier reuse: encode your algorithm into a class and thoroughly debug it, then you can reuse the class again and again. However, when we get to concurrency and synchronization, this is often not possible. Thread-safety issues means that synchronization constructs need to be entangled into every class involved. We contributed a detailed literature review of issues and challenges in concurrent programming and present a methodology that uses the Aspect- Oriented paradigm to address this problem. Aspects will allow us to extract the synchronization concerns as schemes to be “weaved in" later into the main code. This allows the aspects to be separately tested and verified. Hence, the functional components can be weaved with reusable synchronization schemes that are robust and scalable.

Keywords: Aspect-orientation, development methodologysoftware concurrency, synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
833 A Broadcasting Strategy for Interactive Video-on-Demand Services

Authors: Yu-Wei Chen, Li-Ren Han

Abstract:

In this paper, we employ the approach of linear programming to propose a new interactive broadcast method. In our method, a film S is divided into n equal parts and broadcast via k channels. The user simultaneously downloads these segments from k channels into the user-s set-top-box (STB) and plays them in order. Our method assumes that the initial p segments will not have fast-forwarding capabilities. Every time the user wants to initiate d times fast-forwarding, according to our broadcasting strategy, the necessary segments already saved in the user-s STB or are just download on time for playing. The proposed broadcasting strategy not only allows the user to pause and rewind, but also to fast-forward.

Keywords: Broadcasting, Near Video-on-Demand (VOD), Linear Programming, Video-Cassette-Recorder (VCR) Functions, Waiting Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
832 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction

Authors: Talal Alsulaiman, Khaldoun Khashanah

Abstract:

In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent’s attributes. Also, the influence of social networks in the developing of agents interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.

Keywords: Artificial stock markets, agent based simulation, bounded rationality, behavioral finance, artificial neural network, interaction, scale-free networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
831 Durian Marker Kit for Durian (Durio zibethinus Murr.) Identity

Authors: Emma K. Sales

Abstract:

Durian is the flagship fruit of Mindanao and there is an abundance of several cultivars with many confusing identities/ names. The project was conducted to develop procedure for reliable and rapid detection and sorting of durian planting materials. Moreover, it is also aimed to establish specific genetic or DNA markers for routine testing and authentication of durian cultivars in question. The project developed molecular procedures for routine testing. SSR primers were also screened and identified for their utility in discriminating durian cultivars collected. Results of the study showed the following accomplishments: 1. Twenty (29) SSR primers were selected and identified based on their ability to discriminate durian cultivars, 2. Optimized and established standard procedure for identification and authentication of Durian cultivars 3. Genetic profile of durian is now available at Biotech Unit Our results demonstrate the relevance of using molecular techniques in evaluating and identifying durian clones. The most polymorphic primers tested in this study could be useful tools for detecting variation even at the early stage of the plant especially for commercial purposes. The process developed combines the efficiency of the microsatellites development process with the optimization of non-radioactive detection process resulting in a user-friendly protocol that can be performed in two (2) weeks and easily incorporated into laboratories about to start microsatellite development projects. This can be of great importance to extend microsatellite analyses to other crop species where minimal genetic information is currently available. With this, the University can now be a service laboratory for routine testing and authentication of durian clones.

Keywords: DNA, SSR Analysis, genotype, genetic diversity, cultivars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3419
830 Optimized Data Fusion in an Intelligent Integrated GPS/INS System Using Genetic Algorithm

Authors: Ali Asadian, Behzad Moshiri, Ali Khaki Sedigh, Caro Lucas

Abstract:

Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, a method using a hybrid-adaptive network based fuzzy inference system (ANFIS) has been proposed which is trained during the availability of GPS signal to map the error between the GPS and the INS. Then it will be used to predict the error of the INS position components during GPS signal blockage. This paper introduces a genetic optimization algorithm that is used to update the ANFIS parameters with respect to the INS/GPS error function used as the objective function to be minimized. The results demonstrate the advantages of the genetically optimized ANFIS for INS/GPS integration in comparison with conventional ANFIS specially in the cases of satellites- outages. Coping with this problem plays an important role in assessment of the fusion approach in land navigation.

Keywords: Adaptive Network based Fuzzy Inference System (ANFIS), Genetic optimization, Global Positioning System (GPS), Inertial Navigation System (INS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
829 Simulating Drilling Using a CAD System

Authors: Panagiotis Kyratsis, Konstantinos Kakoulis

Abstract:

Nowadays, the rapid development of CAD systems’ programming environments results in the creation of multiple downstream applications, which are developed and becoming increasingly available. CAD based manufacturing simulations is gradually following the same trend. Drilling is the most popular holemaking process used in a variety of industries. A specially built piece of software that deals with the drilling kinematics is presented. The cutting forces are calculated based on the tool geometry, the cutting conditions and the tool/work-piece materials. The results are verified by experimental work. Finally, the response surface methodology (RSM) is applied and mathematical models of the total thrust force and the thrust force developed because of the main cutting edges are proposed.

Keywords: Application programming interface, CAD, drilling, response surface methodology, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
828 Modeling the Symptom-Disease Relationship by Using Rough Set Theory and Formal Concept Analysis

Authors: Mert Bal, Hayri Sever, Oya Kalıpsız

Abstract:

Medical Decision Support Systems (MDSSs) are sophisticated, intelligent systems that can provide inference due to lack of information and uncertainty. In such systems, to model the uncertainty various soft computing methods such as Bayesian networks, rough sets, artificial neural networks, fuzzy logic, inductive logic programming and genetic algorithms and hybrid methods that formed from the combination of the few mentioned methods are used. In this study, symptom-disease relationships are presented by a framework which is modeled with a formal concept analysis and theory, as diseases, objects and attributes of symptoms. After a concept lattice is formed, Bayes theorem can be used to determine the relationships between attributes and objects. A discernibility relation that forms the base of the rough sets can be applied to attribute data sets in order to reduce attributes and decrease the complexity of computation.

Keywords: Formal Concept Analysis, Rough Set Theory, Granular Computing, Medical Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
827 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: Artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L, Schinus terebinthifolius raddi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
826 JaCoText: A Pretrained Model for Java Code-Text Generation

Authors: Jessica Lòpez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri

Abstract:

Pretrained transformer-based models have shown high performance in natural language generation task. However, a new wave of interest has surged: automatic programming language generation. This task consists of translating natural language instructions to a programming code. Despite the fact that well-known pretrained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformers neural network. It aims to generate java source code from natural language text. JaCoText leverages advantages of both natural language and code generation models. More specifically, we study some findings from the state of the art and use them to (1) initialize our model from powerful pretrained models, (2) explore additional pretraining on our java dataset, (3) carry out experiments combining the unimodal and bimodal data in the training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.

Keywords: Java code generation, Natural Language Processing, Sequence-to-sequence Models, Transformers Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
825 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm

Authors: M. Analoui, M. Fadavi Amiri

Abstract:

The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.

Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
824 PI Control for Second Order Delay System with Tuning Parameter Optimization

Authors: R. Farkh, K. Laabidi, M. Ksouri

Abstract:

In this paper, we consider the control of time delay system by Proportional-Integral (PI) controller. By Using the Hermite- Biehler theorem, which is applicable to quasi-polynomials, we seek a stability region of the controller for first order delay systems. The essence of this work resides in the extension of this approach to second order delay system, in the determination of its stability region and the computation of the PI optimum parameters. We have used the genetic algorithms to lead the complexity of the optimization problem.

Keywords: Genetic algorithm, Hermit-Biehler theorem, optimization, PI controller, second order delay system, stability region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
823 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half

Authors: Said C. Fares, Mary A. Fares

Abstract:

It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.

Keywords: Failure Rate, Interactive Learning, Student engagement, CS1.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
822 A Comparison of Exact and Heuristic Approaches to Capital Budgeting

Authors: Jindřiška Šedová, Miloš Šeda

Abstract:

This paper summarizes and compares approaches to solving the knapsack problem and its known application in capital budgeting. The first approach uses deterministic methods and can be applied to small-size tasks with a single constraint. We can also apply commercial software systems such as the GAMS modelling system. However, because of NP-completeness of the problem, more complex problem instances must be solved by means of heuristic techniques to achieve an approximation of the exact solution in a reasonable amount of time. We show the problem representation and parameter settings for a genetic algorithm framework.

Keywords: Capital budgeting, knapsack problem, GAMS, heuristic method, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
821 Distribution Voltage Regulation Under Three- Phase Fault by Using D-STATCOM

Authors: Chaiyut Sumpavakup, Thanatchai Kulworawanichpong

Abstract:

This paper presents the voltage regulation scheme of D-STATCOM under three-phase faults. It consists of the voltage detection and voltage regulation schemes in the 0dq reference. The proposed control strategy uses the proportional controller in which the proportional gain, kp, is appropriately adjusted by using genetic algorithms. To verify its use, a simplified 4-bus test system is situated by assuming a three-phase fault at bus 4. As a result, the DSTATCOM can resume the load voltage to the desired level within 1.8 ms. This confirms that the proposed voltage regulation scheme performs well under three-phase fault events.

Keywords: D-STATCOM, proportional controller, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
820 Automated Java Testing: JUnit versus AspectJ

Authors: Manish Jain, Dinesh Gopalani

Abstract:

Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.

Keywords: Aspect oriented programming, AspectJ, Aspects, JUnit, software testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
819 Adaptive Dynamic Time Warping for Variable Structure Pattern Recognition

Authors: S. V. Yendiyarov

Abstract:

Pattern discovery from time series is of fundamental importance. Particularly, when information about the structure of a pattern is not complete, an algorithm to discover specific patterns or shapes automatically from the time series data is necessary. The dynamic time warping is a technique that allows local flexibility in aligning time series. Because of this, it is widely used in many fields such as science, medicine, industry, finance and others. However, a major problem of the dynamic time warping is that it is not able to work with structural changes of a pattern. This problem arises when the structure is influenced by noise, which is a common thing in practice for almost every application. This paper addresses this problem by means of developing a novel technique called adaptive dynamic time warping.

Keywords: Pattern recognition, optimal control, quadratic programming, dynamic programming, dynamic time warping, sintering control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
818 Towards Developing a Self-Explanatory Scheduling System Based on a Hybrid Approach

Authors: Jian Zheng, Yoshiyasu Takahashi, Yuichi Kobayashi, Tatsuhiro Sato

Abstract:

In the study, we present a conceptual framework for developing a scheduling system that can generate self-explanatory and easy-understanding schedules. To this end, a user interface is conceived to help planners record factors that are considered crucial in scheduling, as well as internal and external sources relating to such factors. A hybrid approach combining machine learning and constraint programming is developed to generate schedules and the corresponding factors, and accordingly display them on the user interface. Effects of the proposed system on scheduling are discussed, and it is expected that scheduling efficiency and system understandability will be improved, compared with previous scheduling systems.

Keywords: Constraint programming, Factors considered in scheduling, machine learning, scheduling system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
817 Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm

Authors: M. Maatar, M. Mekadem, M. Medale, B. Hadjed, B. Imine

Abstract:

In this paper, numerical simulations have been carried out to study the performances of a flapping wing used as an energy collector. Metamodeling and genetic algorithms are used to detect the optimal configuration, improving power coefficient and/or efficiency. Radial basis functions and genetic algorithms have been applied to solve this problem. Three optimization factors are controlled, namely dimensionless heave amplitude h0, pitch amplitude θ0, and flapping frequency f. ANSYS FLUENT software has been used to solve the principal equations at a Reynolds number of 1100, while the heave and pitch motion of a NACA0015 airfoil has been realized using a developed function (UDF). The results reveal an average power coefficient and efficiency of 0.78 and 0.338 with an inexpensive low-fidelity model and a total relative error of 4.1% versus the simulation. The performances of the simulated optimum RBF-NSGA-II have been improved by 1.2% compared with the validated model.

Keywords: Numerical simulation, flapping wing, energy extraction, power coefficient, energy extraction efficiency, RBF, NSGA-II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6
816 An HCI Template for Distributed Applications

Authors: Xizhi Li

Abstract:

Both software applications and their development environment are becoming more and more distributed. This trend impacts not only the way software computes, but also how it looks. This article proposes a Human Computer Interface (HCI) template from three representative applications we have developed. These applications include a Multi-Agent System based software, a 3D Internet computer game with distributed game world logic, and a programming language environment used in constructing distributed neural network and its visualizations. HCI concepts that are common to these applications are described in abstract terms in the template. These include off-line presentation of global entities, entities inside a hierarchical namespace, communication and languages, reconfiguration of entity references in a graph, impersonation and access right, etc. We believe the metaphor that underlies an HCI concept as well as the relationships between a bunch of HCI concepts are crucial to the design of software systems and vice versa.

Keywords: HCI, MAS, computer game, programming language

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
815 Applying the Extreme-Based Teaching Model in Post-Secondary Online Classroom Setting: A Field Experiment

Authors: Leon Pan

Abstract:

The first programming course within post-secondary education has long been recognized as a challenging endeavor for both educators and students alike. Historically, these courses have exhibited high failure rates and a notable number of dropouts. Instructors often lament students' lack of effort on their coursework, and students often express frustration that the teaching methods employed are not effective. Drawing inspiration from the successful principles of Extreme Programming, this study introduces an approach—the Extremes-based teaching model—aimed at enhancing the teaching of introductory programming courses. To empirically determine the effectiveness of the model, a comparison was made between a section taught using the extreme-based model and another utilizing traditional teaching methods. Notably, the extreme-based teaching class required students to work collaboratively on projects, while also demanding continuous assessment and performance enhancement within groups. This paper details the application of the extreme-based model within the post-secondary online classroom context and presents the compelling results that emphasize its effectiveness in advancing the teaching and learning experiences. The extreme-based model led to a significant increase of 13.46 points in the weighted total average and a commendable 10% reduction in the failure rate.

Keywords: Extreme-based teaching model, innovative pedagogical methods, project-based learning, team-based learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150
814 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm

Authors: Ovidiu Domşa, Nicolae Bold

Abstract:

Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.

Keywords: Chromosome, genetic algorithm, subtree, test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 722
813 Using A Hybrid Algorithm to Improve the Quality of Services in Multicast Routing Problem

Authors: Mohammad Reza Karami Nejad

Abstract:

A hybrid learning automata-genetic algorithm (HLGA) is proposed to solve QoS routing optimization problem of next generation networks. The algorithm complements the advantages of the learning Automato Algorithm(LA) and Genetic Algorithm(GA). It firstly uses the good global search capability of LA to generate initial population needed by GA, then it uses GA to improve the Quality of Service(QoS) and acquiring the optimization tree through new algorithms for crossover and mutation operators which are an NP-Complete problem. In the proposed algorithm, the connectivity matrix of edges is used for genotype representation. Some novel heuristics are also proposed for mutation, crossover, and creation of random individuals. We evaluate the performance and efficiency of the proposed HLGA-based algorithm in comparison with other existing heuristic and GA-based algorithms by the result of simulation. Simulation results demonstrate that this paper proposed algorithm not only has the fast calculating speed and high accuracy but also can improve the efficiency in Next Generation Networks QoS routing. The proposed algorithm has overcome all of the previous algorithms in the literature.

Keywords: Routing, Quality of Service, Multicaset, Learning Automata, Genetic, Next Generation Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
812 Rational Structure of Panel with Curved Plywood Ribs

Authors: Janis Šliseris, Karlis Rocens

Abstract:

Optimization of rational geometrical and mechanical parameters of panel with curved plywood ribs is considered in this paper. The panel consists of cylindrical plywood ribs manufactured from Finish plywood, upper and bottom plywood flange, stiffness diaphragms. Panel is filled with foam. Minimal ratio of structure self weight and load that could be applied to structure is considered as rationality criteria. Optimization is done, by using classical beam theory without nonlinearities. Optimization of discreet design variables is done by Genetic algorithm.

Keywords: Curved plywood ribs, genetic algorithm, rationalparameters of ribbed panel, structure optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
811 Singularity Loci of Actuation Schemes for 3RRR Planar Parallel Manipulator

Authors: S. Ramana Babu, V. Ramachandra Raju, K. Ramji

Abstract:

This paper presents the effect of actuation schemes on the performance of parallel manipulators and also how the singularity loci have been changed in the reachable workspace of the manipulator with the choice of actuation scheme to drive the manipulator. The performance of the eight possible actuation schemes of 3RRR planar parallel manipulator is compared with each other. The optimal design problem is formulated to find the manipulator geometry that maximizes the singularity free conditioned workspace for all the eight actuation cases, the optimization problem is solved by using genetic algorithms.

Keywords: Actuation schemes, GCI, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
810 Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm

Authors: Ali Fellah Jahromi, Wen Fang Xie, Rama B. Bhat

Abstract:

A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.

Keywords: Full car model, Linear Quadratic Regulator, Sequential Quadratic Programming, Genetic Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952