Search results for: energy allocation method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10482

Search results for: energy allocation method

10032 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal

Authors: T. Malmir, U. Eicker

Abstract:

Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.

Keywords: Energy recovery, organic waste, urban energy modelling with INSEL, waste flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
10031 Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions

Authors: Hector A. Tinoco, Cesar Garcia-Diaz, Olga L. Ocampo-Lopez

Abstract:

In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams.

Keywords: Hard disk drive, HDD, energy harvesting, voice coil motor, VCM, energy harvester, gait motions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
10030 The Optimization of Sun Collector Parameters

Authors: István Patkó, Hosam Bayoumi Hamuda, András Medve, András Szeder

Abstract:

In order to efficiently solve the problems created by the deepening energy crisis affecting Europe and the world, governments cannot neglect the opportunities of using the energy produced by sun collectors. In many of the EU countries there are sun collectors producing heat energy, e.g. in 2011 in the area of EU27 (countries which belong to European Union) + Switzerland altogether 37519126 m2 were operated, which are capable of producing 26.3 GWh heat energy. The energy produced by these sun collectors is utilized at the place of production. In the near future governments will have to focus more on spreading and using sun collectors. Among the complex problems of operating sun collectors, this article deals with determining the optimal tilt angle, directions of sun collectors. We evaluate the contamination of glass surface of sun collector to the produced energy. Our theoretically results are confirmed by laboratory measurements. The purpose of our work is to help users and engineers in determination of optimal operation parameters of sun collectors.

Keywords: Heat energy, tilt angle, direction of sun collector, contamination of surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
10029 The Effect of Raindrop Kinetic Energy on Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.

Keywords: Erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4085
10028 Numerical Modeling of Steel-Composite Hybrid Tubes Subject to Static and Dynamic Loading

Authors: Y. S. Tai, M. Y. Huang, H. T. Hu

Abstract:

The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.

Keywords: fiber-reinforced metal tubes, energy absorption, axial crushing, impact loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511
10027 Critical Success Factors for Successful Energy Management Implementation towards Sustainability in Malaysian Universities

Authors: A. Abdullah Saleh, A. H. Mohammed, M. N. Abdullah

Abstract:

Recently, universities are increasingly consuming energy to support various activities. A large population of staff and students in Malaysian universities has led to excessive energy consumption which directly gives an impact to the environment. The key question then ascended “How well is an energy management (EM) been practiced in universities without taking the Critical Success Factors (CSFs) into consideration to ensure the management of university achieves the goals in reducing energy consumption. Review on past literature is carried out to establish CSFs for EM best practices. Thus, this paper highlighted the CSFs which have to be focused on by management of university to successfully measure the EM implementation and its performance. At the end of this paper, a theoretical framework is developed for EM success factors towards sustainable university.

Keywords: Critical success factors, energy management, sustainability, Malaysian universities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3825
10026 Wind Energy Status in Turkey

Authors: Mustafa Engin Başoğlu, Bekir Çakir

Abstract:

Since large part of electricity is generated by using fossil based resources, energy is an important agenda for countries. In this context, renewable energy sources are alternative to conventional sources due to the depletion of fossil resources, increasing awareness of climate change and global warming concerns. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, since installed capacity of wind power has increased approximately eight times between 2008 - November of 2014, wind energy is a promising source for Turkey. Furthermore, signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish Government has announced Vision 2023 (energy targets by 2023) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). Energy targets in this plan can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Dependence on foreign energy is reduced for sustainability and energy security. On the other hand, since Turkey is surrounded by three coastal areas, wind energy potential is convenient for wind power application. As of November of 2014, total installed capacity of wind power plants is 3.51 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. In this context, one of the projects funded by private sector, universities and TUBİTAK names as MILRES is an important project aimed to promote the use wind energy in electricity generation. Within this project, wind turbine with 500 kW power has been produced and will be installed at the beginning of the 2015. After that, by using the experience obtained from the first phase of the project, a wind turbine with 2.5 MW power will be manufactured in an industrial scale.

Keywords: Wind energy, wind speed, Vision 2023, MILRES (national wind energy system), wind energy potential, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3255
10025 Bound State Solutions of the Schrödinger Equation for Hulthen-Yukawa Potential in D-Dimensions

Authors: I. Otete, A. I. Ejere, I. S. Okunzuwa

Abstract:

In this work, we used the Hulthen-Yukawa potential to obtain the bound state energy eigenvalues of the Schrödinger equation in D-dimensions within the frame work of the Nikiforov-Uvarov (NU) method. We demonstrated the graphical behaviour of the Hulthen and the Yukawa potential and investigated how the screening parameter and the potential depth affected the structure and the nature of the bound state eigenvalues. The results we obtained showed that increasing the screening parameter lowers the energy eigenvalues. Also, the eigenvalues acted as an inverse function of the potential depth. That is, increasing the potential depth reduces the energy eigenvalues.

Keywords: Schrödinger's equation, bound state, Hulthen-Yukawa potential, Nikiforov-Uvarov, D-dimensions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
10024 An Energy Reverse AODV Routing Protocol in Ad Hoc Mobile Networks

Authors: Said Khelifa, Zoulikha Mekkakia Maaza

Abstract:

In this paper we present a full performance analysis of an energy conserving routing protocol in mobile ad hoc network, named ER-AODV (Energy Reverse Ad-hoc On-demand Distance Vector routing). ER-AODV is a reactive routing protocol based on a policy which combines two mechanisms used in the basic AODV protocol. AODV and most of the on demand ad hoc routing protocols use single route reply along reverse path. Rapid change of topology causes that the route reply could not arrive to the source node, i.e. after a source node sends several route request messages, the node obtains a reply message, and this increases in power consumption. To avoid these problems, we propose a mechanism which tries multiple route replies. The second mechanism proposes a new adaptive approach which seeks to incorporate the metric "residual energy " in the process route selection, Indeed the residual energy of mobile nodes were considered when making routing decisions. The results of simulation show that protocol ER-AODV answers a better energy conservation.

Keywords: Ad hoc mobile networks, Energy AODV, Energy consumption, ER-AODV, Reverse AODV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319
10023 The Study of Cost Accounting in S Company Based On TDABC

Authors: Heng Ma

Abstract:

Third-party warehousing logistics has an important role in the development of external logistics. At present, the third-party logistics in our country is still a new industry, the accounting system has not yet been established, the current financial accounting system of third-party warehousing logistics is mainly in the traditional way of thinking, and only able to provide the total cost information of the entire enterprise during the accounting period, unable to reflect operating indirect cost information. In order to solve the problem of third-party logistics industry cost information distortion, improve the level of logistics cost management, the paper combines theoretical research and case analysis method to reflect cost allocation by building third-party logistics costing model using Time-Driven Activity-Based Costing(TDABC), and takes S company as an example to account and control the warehousing logistics cost.Based on the idea of “Products consume activities and activities consume resources”, TDABC put time into the main cost driver and use time-consuming equation resources assigned to cost objects. In S company, the objects focuses on three warehouse, engaged with warehousing and transportation (the second warehouse, transport point) service. These three warehouse respectively including five departments, Business Unit, Production Unit, Settlement Center, Security Department and Equipment Division, the activities in these departments are classified by in-out of storage forecast, in-out of storage or transit and safekeeping work. By computing capacity cost rate, building the time-consuming equation, the paper calculates the final operation cost so as to reveal the real cost.The numerical analysis results show that the TDABC can accurately reflect the cost allocation of service customers and reveal the spare capacity cost of resource center, verifies the feasibility and validity of TDABC in third-party logistics industry cost accounting. It inspires enterprises focus on customer relationship management and reduces idle cost to strengthen the cost management of third-party logistics enterprises.

Keywords: Third-party logistics enterprises, TDABC, cost management, S company.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
10022 Construction Of Decentralized Lifetime Maximizing Tree for Data Aggregation in Wireless Sensor Networks

Authors: Deepali Virmani , Satbir Jain

Abstract:

To meet the demands of wireless sensor networks (WSNs) where data are usually aggregated at a single source prior to transmitting to any distant user, there is a need to establish a tree structure inside any given event region. In this paper , a novel technique to create one such tree is proposed .This tree preserves the energy and maximizes the lifetime of event sources while they are constantly transmitting for data aggregation. The term Decentralized Lifetime Maximizing Tree (DLMT) is used to denote this tree. DLMT features in nodes with higher energy tend to be chosen as data aggregating parents so that the time to detect the first broken tree link can be extended and less energy is involved in tree maintenance. By constructing the tree in such a way, the protocol is able to reduce the frequency of tree reconstruction, minimize the amount of data loss ,minimize the delay during data collection and preserves the energy.

Keywords: branch energy, decentralized, energy level , lifetime, tree energy, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
10021 Evaluation of The Energy Performance of Shading Devices based on Incremental Costs

Authors: Jian Yao, Chengwen Yan

Abstract:

Solar shading designs are important for reduction of building energy consumption and improvement of indoor thermal environment. This paper carried out a number of building simulations for evaluation of the energy performance of different shading devices based on incremental costs. The results show that movable shading devices lower incremental costs by up to 50% compared with fixed ones for the same building energy efficiency for residential buildings, and wing panel shadings are much more suitable in commercial buildings than baring screen ones and overhangs for commercial buildings.

Keywords: Solar shading, Incremental costs, Building energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
10020 An Environmental Impact Tool to Assess National Energy Scenarios

Authors: R. Taviv, A.C. Brent, H. Fortuin

Abstract:

The Long-range Energy and Alternatives Planning (LEAP) energy planning system has been developed for South Africa, for the 2005 base year and a limited number of plausible future scenarios that may have significant implications (negative or positive) in terms of environmental impacts. The system quantifies the national energy demand for the domestic, commercial, transport, industry and agriculture sectors, the supply of electricity and liquid fuels, and the resulting emissions. The South African National Energy Research Institute (SANERI) identified the need to develop an environmental assessment tool, based on the LEAP energy planning system, to provide decision-makers and stakeholders with the necessary understanding of the environmental impacts associated with different energy scenarios. A comprehensive analysis of indicators that are used internationally and in South Africa was done and the available data was accessed to select a reasonable number of indicators that could be utilized in energy planning. A consultative process was followed to determine the needs of different stakeholders on the required indicators and also the most suitable form of reporting. This paper demonstrates the application of Energy Environmental Sustainability Indicators (EESIs) as part of the developed tool, which assists with the identification of the environmental consequences of energy generation and use scenarios and thereby promotes sustainability, since environmental considerations can then be integrated into the preparation and adoption of policies, plans, programs and projects. Recommendations are made to refine the tool further for South Africa.

Keywords: Energy modeling, LEAP, environmental impact, environmental indicators, energy sector emissions, sustainable development, South Africa

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
10019 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems

Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar

Abstract:

Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.

Keywords: Aspiration efficiency, energy, particulate matter, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
10018 Bubble Point Pressures of CO2+Ethyl Palmitate by a Cubic Equation of State and the Wong-Sandler Mixing Rule

Authors: M. A. Sedghamiz, S. Raeissi

Abstract:

This study presents three different approaches to estimate bubble point pressures for the binary system of CO2 and ethyl palmitate fatty acid ethyl ester. The first method involves the Peng-Robinson (PR) Equation of State (EoS) with the conventional mixing rule of Van der Waals. The second approach involves the PR EOS together with the Wong Sandler (WS) mixing rule, coupled with the UNIQUAC GE model. In order to model the bubble point pressures with this approach, the volume and area parameter for ethyl palmitate were estimated by the Hansen group contribution method. The last method involved the Peng-Robinson, combined with the Wong-Sandler method, but using NRTL as the GE model. Results using the Van der Waals mixing rule clearly indicated that this method has the largest errors among all three methods, with errors in the range of 3.96-6.22%. The PR-WS-UNIQUAC method exhibited small errors, with average absolute deviations between 0.95 to 1.97 percent. The PR-WS-NRTL method led to the least errors, where average absolute deviations ranged between 0.65-1.7%.

Keywords: Bubble pressure, Gibbs excess energy model, mixing rule, CO2 solubility, ethyl palmitate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
10017 Modes of Collapse of Compress–Expand Member under Axial Loading

Authors: Shigeyuki Haruyama, Aidil Khaidir Bin Muhamad, Ken Kaminishi, Dai-Heng Chen

Abstract:

In this paper, a study on the modes of collapse of compress- expand members are presented. Compress- expand member is a compact, multiple-combined cylinders, to be proposed as energy absorbers. Previous studies on the compress- expand member have clarified its energy absorption efficiency, proposed an approximate equation to describe its deformation characteristics and also highlighted the improvement that it has brought. However, for the member to be practical, the actual range of geometrical dimension that it can maintain its applicability must be investigated. In this study, using a virtualized materials that comply the bilinear hardening law, Finite element Method (FEM) analysis on the collapse modes of compress- expand member have been conducted. Deformation maps that plotted the member's collapse modes with regards to the member's geometric and material parameters were then presented in order to determine the dimensional range of each collapse modes.

Keywords: Axial collapse, compress-expand member, tubular member, finite element method, modes of collapse, thin-walled cylindrical tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
10016 Accurate Optical Flow Based on Spatiotemporal Gradient Constancy Assumption

Authors: Adam Rabcewicz

Abstract:

Variational methods for optical flow estimation are known for their excellent performance. The method proposed by Brox et al. [5] exemplifies the strength of that framework. It combines several concepts into single energy functional that is then minimized according to clear numerical procedure. In this paper we propose a modification of that algorithm starting from the spatiotemporal gradient constancy assumption. The numerical scheme allows to establish the connection between our model and the CLG(H) method introduced in [18]. Experimental evaluation carried out on synthetic sequences shows the significant superiority of the spatial variant of the proposed method. The comparison between methods for the realworld sequence is also enclosed.

Keywords: optical flow, variational methods, gradient constancy assumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
10015 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

Authors: Aymen Laadhari, Gábor Székely

Abstract:

This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.

Keywords: Fluid-membrane interaction, stretching, Eulerian, finite element method, Newton, implicit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
10014 A Balanced Cost Cluster-Heads Selection Algorithm for Wireless Sensor Networks

Authors: Ouadoudi Zytoune, Youssef Fakhri, Driss Aboutajdine

Abstract:

This paper focuses on reducing the power consumption of wireless sensor networks. Therefore, a communication protocol named LEACH (Low-Energy Adaptive Clustering Hierarchy) is modified. We extend LEACHs stochastic cluster-head selection algorithm by a modifying the probability of each node to become cluster-head based on its required energy to transmit to the sink. We present an efficient energy aware routing algorithm for the wireless sensor networks. Our contribution consists in rotation selection of clusterheads considering the remoteness of the nodes to the sink, and then, the network nodes residual energy. This choice allows a best distribution of the transmission energy in the network. The cluster-heads selection algorithm is completely decentralized. Simulation results show that the energy is significantly reduced compared with the previous clustering based routing algorithm for the sensor networks.

Keywords: Wireless Sensor Networks, Energy efficiency, WirelessCommunications, Clustering-based algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625
10013 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities

Authors: Kung-Jen Tu, Danny Vernatha

Abstract:

To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.

Keywords: Sensor, electricity sub-meters, database, energy anomaly detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2256
10012 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.

Keywords: Energy-efficient, fog computing, IoT, telehealth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29
10011 Sustainable Energy Policy for Africa (Nigeria) and Europe: A Comparative Study

Authors: N. Garba, C. S. Özveren, D. Blackwood, A. Adamu, A. I. Augie

Abstract:

The purpose of this paper was to develop a policy and associated regulatory actions together with legislations that could help in sustainable energy development in Africa and Nigeria in particular. As a result of depletion of fossil fuels in most African countries, renewable energy options such as solar, wind and hydropower biomass are considered to be alternative sources in sustaining the energy security in the continent and particularly Nigeria. Corruption level is another factor that hinders economic growth and development in Nigeria. A review of the past literature on sustainable energy policy from Europe has been carried out. The countries investigated include: The United Kingdom, Germany, Norway and Finland. Their policies have been examined, and this helps suggest new policies on sustainable energy for Nigeria and Africa as a continent. The policies analyzed focused on incentives such as Feed-in-Tariff (FiT). Renewable energy sources potential and renewable have been investigated in Nigeria and that could help in formulating new sustainable energy policy for the country. Some of the proposed policies includes: Renewable Obligation (RO), Cogeneration, FiT, Carbon Capture and Storage (CCS), Renewable Integration, and Heat Entrepreneurship. These are some the new policies that could help sustain the energy security, reduce the level of poverty and corruption in Nigeria as well as Africa in general. If these policies are well designed and properly implemented as observed in this research, Nigeria can achieve sustainable energy and economic growth and development in the near future. Each proposed policy was assigned a timeframe for it to be achieved.

Keywords: Sustainability, renewable energy, energy policies, Africa, Nigeria, Europe, United Kingdom, Germany, Norway, Finland.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
10010 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

In the present time, energy crises is considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which heat recovery system generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.

Keywords: Solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
10009 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply

Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong

Abstract:

Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC and AC motors and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.

Keywords: Vertical Water Treatment System, DC Power Supply, Energy Efficiency, BLDC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
10008 Feasibility Study on the Use of HEMS for Thermal Comfort and Energy Saving in Japanese Residential Buildings

Authors: K. C. Rajan, H. B. Rijal, Kazui Yoshida, Masanori Shukuya

Abstract:

The electricity consumption in the Japanese household sector has increased with higher rate than that of other sectors. This may be because of aging and information oriented society that requires more electrical appliances to make the life better and easier, under this circumstances, energy saving is one of the essential necessity in Japanese society. To understand the way of energy use and demand response of the residential occupants, it is important to understand the structure of energy used. Home Energy Management System (HEMS) may be used for understanding the pattern and the structure of energy used. HEMS is a visualization system of the energy usage by connecting the electrical equipment in the home and thereby automatically control the energy use in each device, so that the energy saving is achieved. Therefore, the HEMS can provide with the easiest way to understand the structure of energy use. The HEMS has entered the mainstream of the Japanese market. The objective of this study is to understand the pattern of energy saving and cost saving in different regions including Japan during HEMS use. To observe thermal comfort level of HEMS managed residential buildings in Japan, the field survey was made and altogether, 1534 votes from 37 occupants related to thermal comfort, occupants’ behaviors and clothing insulation were collected and analyzed. According to the result obtained, approximately 17.9% energy saving and 8.9% cost saving is possible if HEMS is applied effectively. We found the thermal sensation and overall comfort level of the occupants is high in the studied buildings. The occupants residing in those HEMS buildings are satisfied with the thermal environment and they have accepted it. Our study concluded that the significant reduction in Japanese residential energy use can be achieved by the proper utilization of the HEMS. Better thermal comfort is also possible with the use of HEMS if energy use is managed in a rationally effective manner.

Keywords: Energy reduction, thermal comfort, HEMS market, thermal environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
10007 Matlab/Simulink Simulation of Solar Energy Storage System

Authors: Mustafa A. Al-Refai

Abstract:

This paper investigates the energy storage  technologies that can potentially enhance the use of solar energy.  Water electrolysis systems are seen as the principal means of  producing a large amount of hydrogen in the future. Starting from the  analysis of the models of the system components, a complete  simulation model was realized in the Matlab-Simulink environment.  Results of the numerical simulations are provided. The operation of  electrolysis and photovoltaic array combination is verified at various  insulation levels. It is pointed out that solar cell arrays and  electrolysers are producing the expected results with solar energy  inputs that are continuously varying.

Keywords: Electrolyzer, Simulink, solar energy, storage system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9039
10006 Numerical Analysis for the Performance of a Thermoelectric Generator According to Engine Exhaust Gas Thermal Conditions

Authors: Jinkyu Park, Yungjin Kim, Byungdeok In, Sangki Park, Kihyung Lee

Abstract:

Internal combustion engines rejects 30-40% of the energy supplied by fuel to the environment through exhaust gas. thus, there is a possibility for further significant improvement of efficiency with the utilization of exhaust gas energy and its conversion to mechanical energy or electrical energy. The Thermo-Electric Generator (TEG) will be located in the exhaust system and will make use of an energy flow between the warmer exhaust gas and the external environment. Predict to th optimum position of temperature distribution and the performance of TEG through numerical analysis. The experimental results obtained show that the power output significantly increases with the temperature difference between cold and hot sides of a thermoelectric generator.

Keywords: Thermoelectric generator, Numerical analysis, Seebeck coefficient, Figure of merit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
10005 An Efficient Approach for Shear Behavior Definition of Plant Stalk

Authors: M. R. Kamandar, J. Massah

Abstract:

The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.

Keywords: Buxus, privet, impact cutting, shear energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
10004 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials

Authors: Ademola K. Aremu, Joseph. C. Igbeka

Abstract:

The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.

Keywords: Efficiency, energy, exergy, heating, insolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
10003 Life Cycle Assessment of Residential Buildings: A Case Study in Canada

Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq

Abstract:

Residential buildings consume significant amounts of energy and produce large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH are found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.

Keywords: Building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5138