Search results for: Shape Optimization of Chevron Nozzles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2625

Search results for: Shape Optimization of Chevron Nozzles

2175 Optimization Using Simulation of the Vehicle Routing Problem

Authors: Nayera E. El-Gharably, Khaled S. El-Kilany, Aziz E. El-Sayed

Abstract:

A key element of many distribution systems is the routing and scheduling of vehicles servicing a set of customers. A wide variety of exact and approximate algorithms have been proposed for solving the vehicle routing problems (VRP). Exact algorithms can only solve relatively small problems of VRP, which is classified as NP-Hard. Several approximate algorithms have proven successful in finding a feasible solution not necessarily optimum. Although different parts of the problem are stochastic in nature; yet, limited work relevant to the application of discrete event system simulation has addressed the problem. Presented here is optimization using simulation of VRP; where, a simplified problem has been developed in the ExtendSimTM simulation environment; where, ExtendSimTM evolutionary optimizer is used to minimize the total transportation cost of the problem. Results obtained from the model are very satisfactory. Further complexities of the problem are proposed for consideration in the future.

Keywords: Discrete event system simulation, optimization using simulation, vehicle routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5847
2174 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization

Authors: Lana Dalawr Jalal

Abstract:

This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex threedimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.

Keywords: Obstacle Avoidance, Particle Swarm Optimization, Three-Dimensional Path Planning Unmanned Aerial Vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
2173 Thermo Mechanical Design and Analysis of PEM Fuel cell Plate

Authors: Saravana Kannan Thangavelu

Abstract:

Fuel and oxidant gas delivery plate, or fuel cell plate, is a key component of a Proton Exchange Membrane (PEM) fuel cell. To manufacture low-cost and high performance fuel cell plates, advanced computer modeling and finite element structure analysis are used as virtual prototyping tools for the optimization of the plates at the early design stage. The present study examines thermal stress analysis of the fuel cell plates that are produced using a patented, low-cost fuel cell plate production technique based on screen-printing. Design optimization is applied to minimize the maximum stress within the plate, subject to strain constraint with both geometry and material parameters as design variables. The study reveals the characteristics of the printed plates, and provides guidelines for the structure and material design of the fuel cell plate.

Keywords: Design optimization, FEA, PEM fuel cell, Thermal stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
2172 Cross Layer Optimization for Fairness Balancing Based on Adaptively Weighted Utility Functions in OFDMA Systems

Authors: Jianwei Wang, Timo Korhonen, Yuping Zhao

Abstract:

Cross layer optimization based on utility functions has been recently studied extensively, meanwhile, numerous types of utility functions have been examined in the corresponding literature. However, a major drawback is that most utility functions take a fixed mathematical form or are based on simple combining, which can not fully exploit available information. In this paper, we formulate a framework of cross layer optimization based on Adaptively Weighted Utility Functions (AWUF) for fairness balancing in OFDMA networks. Under this framework, a two-step allocation algorithm is provided as a sub-optimal solution, whose control parameters can be updated in real-time to accommodate instantaneous QoS constrains. The simulation results show that the proposed algorithm achieves high throughput while balancing the fairness among multiple users.

Keywords: OFDMA, Fairness, AWUF, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
2171 Pseudo-polynomial Motion Commands for Vibration Suppression of Belt-driven Rotary Platforms

Authors: Giovanni Incerti

Abstract:

The motion planning technique described in this paper has been developed to eliminate or reduce the residual vibrations of belt-driven rotary platforms, while maintaining unchanged the motion time and the total angular displacement of the platform. The proposed approach is based on a suitable choice of the motion command given to the servomotor that drives the mechanical device; this command is defined by some numerical coefficients which determine the shape of the displacement, velocity and acceleration profiles. Using a numerical optimization technique, these coefficients can be changed without altering the continuity conditions imposed on the displacement and its time derivatives at the initial and final time instants. The proposed technique can be easily and quickly implemented on an actual device, since it requires only a simple modification of the motion command profile mapped in the memory of the electronic motion controller.

Keywords: Command shaping, residual vibrations, belt transmission, servomechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
2170 Formulation and Evaluation of Dispersible Tablet of Furosemide for Pediatric Use

Authors: O. Benaziz, A. Dorbane, S. Djeraba

Abstract:

The objective of this work is to formulate a dry dispersible form of furosemide in the context of pediatric dose adjustment. To achieve this, we have produced a set of formulas that will be tested in process and after compression. The formula with the best results will be improved to optimize the final shape of the product. Furosemide is the most widely used pediatric diuretic because of its low toxicity. The manufacturing process was chosen taking into account all the data relating to the active ingredient and the excipients used and complying with the specifications and requirements of dispersible tablets. The process used to prepare these tablets was wet granulation. Different excipients were used: lactose, maize starch, magnesium stearate and two superdisintegrants. The mode of incorporation of super-disintegrant changes with each formula. The use of super-disintegrant in the formula allowed optimization of the disintegration time. Prepared tablets were evaluated for weight, content uniformity, hardness, disintegration time, friability and in vitro dissolution test. 

Keywords: Formulation, dispersible tablets, wet granulation, superdisintegrants, disintegration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185
2169 Experimental Study on Dehumidification Performance of Supersonic Nozzle

Authors: Esam Jassim

Abstract:

Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR.

Keywords: Supersonic nozzle, dehumidification, particle separation, geometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
2168 Design Optimization of Ferrocement-Laminated Plate Using Genetic Algorithm

Authors: M. Rokonuzzaman, Z. Gürdal

Abstract:

This paper describes the design optimization of ferrocement-laminated plate made up of reinforcing steel wire mesh(es) and cement mortar. For the improvement of the designing process, the plate is modeled as a multi-layer medium, dividing the ferrocement plate into layers of mortar and ferrocement. The mortar layers are assumed to be isotropic in nature and the ferrocement layers are assumed to be orthotropic. The ferrocement layers are little stiffer, but much more costlier, than the mortar layers due the presence of steel wire mesh. The optimization is performed for minimum weight design of the laminate using a genetic algorithm. The optimum designs are discussed for different plate configurations and loadings, and it is compared with the worst designs obtained at the final generation. The paper provides a procedure for the designers in decision-making process.

Keywords: Buckling, Ferrocement-Laminated Plate, Genetic Algorithm, Plate Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
2167 Experimental Analysis of Diesel Hydrotreating Reactor to Development a Simplified Tool for Process Real- time Optimization

Authors: S.Shokri, S.Zahedi, M.Ahmadi Marvast, B. Baloochi, H.Ganji

Abstract:

In this research, a systematic investigation was carried out to determine the optimum conditions of HDS reactor. Moreover, a suitable model was developed for a rigorous RTO (real time optimization) loop of HDS (Hydro desulfurization) process. A systematic experimental series was designed based on CCD (Central Composite design) and carried out in the related pilot plant to tune the develop model. The designed variables in the experiments were Temperature, LHSV and pressure. However, the hydrogen over fresh feed ratio was remained constant. The ranges of these variables were respectively equal to 320-380ºC, 1- 21/hr and 50-55 bar. a power law kinetic model was also developed for our further research in the future .The rate order and activation energy , power of reactant concentration and frequency factor of this model was respectively equal to 1.4, 92.66 kJ/mol and k0=2.7*109 .

Keywords: Statistical model, Multiphase Reactors, Gas oil, Hydrodesulfurization, Optimization, Kinetics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
2166 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency

Authors: Valeriya Tyo, Serikbolat Yessengabulov

Abstract:

Regions with extreme climate conditions such as Astana city require energy saving measures to increase energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of key factors to be considered. Architectural form of a building has impact on space heating and cooling energy use, however the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.

Keywords: Building geometry, energy efficiency, heat gain, heat loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
2165 Optimization Method Based MPPT for Wind Power Generators

Authors: Chun-Yao Lee , Yi-Xing Shen , Jung-Cheng Cheng , Chih-Wen Chang, Yi-Yin Li

Abstract:

This paper proposes the method combining artificial neural network with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. With the measurements of wind speed, rotor speed of wind generator and output power, the artificial neural network can be trained and the wind speed can be estimated. The proposed control system in this paper provides a manner for searching the maximum output power of wind generator even under the conditions of varying wind speed and load impedance.

Keywords: maximum power point tracking, artificial neural network, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
2164 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

Authors: Mamidi Ramakrishna Rao

Abstract:

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.

Keywords: Direct search, DFIG, equivalent circuit parameters, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
2163 Ant System with Acoustic Communication

Authors: S. Bougrine, S. Ouchraa, B. Ahiod, A. A. El Imrani

Abstract:

Ant colony optimization is an ant algorithm framework that took inspiration from foraging behavior of ant colonies. Indeed, ACO algorithms use a chemical communication, represented by pheromone trails, to build good solutions. However, ants involve different communication channels to interact. Thus, this paper introduces the acoustic communication between ants while they are foraging. This process allows fine and local exploration of search space and permits optimal solution to be improved.

Keywords: Acoustic Communication, Ant Colony Optimization, Local Search, Traveling Salesman Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
2162 Selecting Materialized Views Using Two-Phase Optimization with Multiple View Processing Plan

Authors: Jiratta Phuboon-ob, Raweewan Auepanwiriyakul

Abstract:

A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance cost. Therefore, in this paper, we introduce a new approach aimed at solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that our method provides a further improvement in term of query processing cost and view maintenance cost.

Keywords: Data warehouse, materialized views, view selectionproblem, two-phase optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
2161 UB-Tree Indexing for Semantic Query Optimization of Range Queries

Authors: S. Housseno, A. Simonet, M. Simonet

Abstract:

Semantic query optimization consists in restricting the search space in order to reduce the set of objects of interest for a query. This paper presents an indexing method based on UB-trees and a static analysis of the constraints associated to the views of the database and to any constraint expressed on attributes. The result of the static analysis is a partitioning of the object space into disjoint blocks. Through Space Filling Curve (SFC) techniques, each fragment (block) of the partition is assigned a unique identifier, enabling the efficient indexing of fragments by UB-trees. The search space corresponding to a range query is restricted to a subset of the blocks of the partition. This approach has been developed in the context of a KB-DBMS but it can be applied to any relational system.

Keywords: Index, Range query, UB-tree, Space Filling Curve, Query optimization, Views, Database, Integrity Constraint, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500
2160 Multi-objective Optimisation of Composite Laminates under Heat and Moisture Effects using a Hybrid Neuro-GA Algorithm

Authors: M. R. Ghasemi, A. Ehsani

Abstract:

In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.

Keywords: Composite Laminates, GA, Multi-objectiveOptimisation, Neural Networks, RBFNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
2159 An Investigation on the Effects of Injection Spray Cone on Propulsive Droplets in a Duct

Authors: M. Mojtahedpoor

Abstract:

This paper addresses one important aspect of combustion system analysis, the spray evaporation and dispersion modeling. In this study we assume an empty cylinder which is as a simulator for a ramjet engine and the cylinder has been studied by cold flow. Four nozzles have the duties of injection which are located in the entrance of cylinder. The air flow comes into the cylinder from one side and injection operation will be done. By changing injection velocity and entrance air flow velocity, we have studied droplet sizing and efficient mass fraction of fuel vapor near and at the exit area. We named the mass of fuel vapor inside the flammability limit as the efficient mass fraction. Further, we decreased the initial temperature of fuel droplets and we have repeated the investigating again. To fulfill the calculation we used a modified version of KIVA-3V.

Keywords: Ramjet, droplet sizing, injection velocity, air flowvelocity, efficient mass fraction..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
2158 Interactive Compromise Approach with Particle Swarm Optimization for Environmental/Economic Power Dispatch

Authors: Ming-Tang Tsai, Chih-Wei Yen

Abstract:

In this paper, an Interactive Compromise Approach with Particle Swarm Optimization(ICA-PSO) is presented to solve the Economic Emission Dispatch(EED) problem. The cost function and emission function are modeled as the nonsmooth functions, respectively. The bi-objective including both the minimization of cost and emission is formulated in this paper. ICA-PSO is proposed to solve EED problem for finding a better compromise solution. The solution methodology can offer a global or near-global solution for decision-making requirements. The effectiveness and efficiency of ICA-PSO are demonstrated by a sample test system. Test results can be shown that the proposed method provide a practical and flexible framework for power dispatch.

Keywords: Interactive Compromise Approach, Emission Control, Economic Dispatch, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
2157 Effects of Position and Shape of Atomic Defects on the Band Gap of Graphene Nano Ribbon Superlattices

Authors: Zeinab Jokar, Mohammad Reza Moslemi

Abstract:

In this work, we study the behavior of introducing atomic size vacancy in a graphene nanoribbon superlattice. Our investigations are based on the density functional theory (DFT) with the Local Density Approximation in Atomistix Toolkit (ATK). We show that, in addition to its shape, the position of vacancy has a major impact on the electrical properties of a graphene nanoribbon superlattice. We show that the band gap of an armchair graphene nanoribbon may be tuned by introducing an appropriate periodic pattern of vacancies. The band gap changes in a zig-zag manner similar to the variation of band gap of a graphene nanoribbon by changing its width.

Keywords: Antidot, Atomistix ToolKit, Superlattice, Vacancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705
2156 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper introduces an original method of parametric optimization of the structure for multimodal decisionlevel fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

Keywords: Сlassification accuracy, fusion solution, total error rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
2155 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization

Authors: Martha C. Orazulume, Jibril D. Jiya

Abstract:

Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.

Keywords: Attitude control, flexible satellite, particle swarm optimization, PID controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
2154 Using Swarm Intelligence for Improving Accuracy of Fuzzy Classifiers

Authors: Hassan M. Elragal

Abstract:

This paper discusses a method for improving accuracy of fuzzy-rule-based classifiers using particle swarm optimization (PSO). Two different fuzzy classifiers are considered and optimized. The first classifier is based on Mamdani fuzzy inference system (M_PSO fuzzy classifier). The second classifier is based on Takagi- Sugeno fuzzy inference system (TS_PSO fuzzy classifier). The parameters of the proposed fuzzy classifiers including premise (antecedent) parameters, consequent parameters and structure of fuzzy rules are optimized using PSO. Experimental results show that higher classification accuracy can be obtained with a lower number of fuzzy rules by using the proposed PSO fuzzy classifiers. The performances of M_PSO and TS_PSO fuzzy classifiers are compared to other fuzzy based classifiers

Keywords: Fuzzy classifier, Optimization of fuzzy systemparameters, Particle swarm optimization, Pattern classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
2153 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation

Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta

Abstract:

Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.

Keywords: Channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, Lévy flight distribution, optimization, improved multi–objective Firefly algorithms, Pareto optimal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
2152 Optimal Capacitor Placement in Distribution Feeders

Authors: N. Rugthaicharoencheep, S. Auchariyamet

Abstract:

Optimal capacitor allocation in distribution systems has been studied for a long times. It is an optimization problem which has an objective to define the optimal sizes and locations of capacitors to be installed. In this works, an overview of capacitor placement problem in distribution systems is briefly introduced. The objective functions and constraints of the problem are listed and the methodologies for solving the problem are summarized.

Keywords: Capacitor Placement, Distribution Systems, Optimization Techniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422
2151 Development of UiTM Robotic Prosthetic Hand

Authors: M. Amlie A. Kasim, Ahsana Aqilah, Ahmed Jaffar, Cheng Yee Low, Roseleena Jaafar, M. Saiful Bahari, Armansyah

Abstract:

The study of human hand morphology reveals that developing an artificial hand with the capabilities of human hand is an extremely challenging task. This paper presents the development of a robotic prosthetic hand focusing on the improvement of a tendon driven mechanism towards a biomimetic prosthetic hand. The design of this prosthesis hand is geared towards achieving high level of dexterity and anthropomorphism by means of a new hybrid mechanism that integrates a miniature motor driven actuation mechanism, a Shape Memory Alloy actuated mechanism and a passive mechanical linkage. The synergy of these actuators enables the flexion-extension movement at each of the finger joints within a limited size, shape and weight constraints. Tactile sensors are integrated on the finger tips and the finger phalanges area. This prosthesis hand is developed with an exact size ratio that mimics a biological hand. Its behavior resembles the human counterpart in terms of working envelope, speed and torque, and thus resembles both the key physical features and the grasping functionality of an adult hand.

Keywords: Prosthetic hand, Biomimetic actuation, Shape Memory Alloy, Tactile sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
2150 Optimization of Transfer Pricing in a Recession with Reflection on Croatian Situation

Authors: Jasminka Radolović

Abstract:

Countries in recession, among them Croatia, have lower tax revenues as a result of unfavorable economic situation, which is decrease of the economic activities and unemployment. The global tax base has decreased. In order to create larger state revenues, states use the institute of tax authorities. By controlling transfer pricing in the international companies and using certain techniques, tax authorities can create greater tax obligations for the companies in a short period of time.

Keywords: Documentation, Methods, Tax Optimization, Transfer Pricing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
2149 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

Authors: S. Bahadır Yüksel, Alptuğ Ünal

Abstract:

The Composite Shear Walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Keywords: Shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
2148 Effects of Injection Velocity and Entrance Airflow Velocity on Droplets Sizing in a Duct

Authors: M. M. Doustdar , M. Mojtahedpoor

Abstract:

This paper addresses one important aspect of combustion system analysis, the spray evaporation and dispersion modeling. In this study we assume an empty cylinder which is as a simulator for a ramjet engine and the cylinder has been studied by cold flow. Four nozzles have the duties of injection which are located in the entrance of cylinder. The air flow comes into the cylinder from one side and injection operation will be done. By changing injection velocity and entrance air flow velocity, we have studied droplet sizing and efficient mass fraction of fuel vapor near and at the exit area. We named the mass of fuel vapor inside the flammability limit as the efficient mass fraction. Further, we decreased the initial temperature of fuel droplets and we have repeated the investigating again. To fulfill the calculation we used a modified version of KIVA-3V.

Keywords: Ramjet, droplet sizing, injection velocity, air flow velocity, efficient mass fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
2147 Reducing Variation of Dyeing Process in Textile Manufacturing Industry

Authors: M. Zeydan, G. Toğa

Abstract:

This study deals with a multi-criteria optimization problem which has been transformed into a single objective optimization problem using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Grey Relational Analyses (GRA) approach. Grey-RSM and Grey-ANN are hybrid techniques which can be used for solving multi-criteria optimization problem. There have been two main purposes of this research as follows. 1. To determine optimum and robust fiber dyeing process conditions by using RSM and ANN based on GRA, 2. To obtain the best suitable model by comparing models developed by different methodologies. The design variables for fiber dyeing process in textile are temperature, time, softener, anti-static, material quantity, pH, retarder, and dispergator. The quality characteristics to be evaluated are nominal color consistency of fiber, maximum strength of fiber, minimum color of dyeing solution. GRA-RSM with exact level value, GRA-RSM with interval level value and GRA-ANN models were compared based on GRA output value and MSE (Mean Square Error) performance measurement of outputs with each other. As a result, GRA-ANN with interval value model seems to be suitable reducing the variation of dyeing process for GRA output value of the model.

Keywords: Artificial Neural Network, Grey Relational Analysis, Optimization, Response Surface Methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3555
2146 Hybrid Algorithm for Hammerstein System Identification Using Genetic Algorithm and Particle Swarm Optimization

Authors: Tomohiro Hachino, Kenji Shimoda, Hitoshi Takata

Abstract:

This paper presents a method of model selection and identification of Hammerstein systems by hybridization of the genetic algorithm (GA) and particle swarm optimization (PSO). An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The weighting parameters of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. On the other hand, the adjusting parameters of the ACF model structure are properly selected by the hybrid algorithm of the GA and PSO, where the Akaike information criterion is utilized as the evaluation value function. Simulation results are shown to demonstrate the effectiveness of the proposed hybrid algorithm.

Keywords: Hammerstein system, identification, automatic choosing function model, genetic algorithm, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501