Search results for: Multi criteria inventory classification models
5302 Toward a Use of Ontology to Reinforcing Semantic Classification of Message Based On LSA
Authors: S. Lgarch, M. Khalidi Idrissi, S. Bennani
Abstract:
For best collaboration, Asynchronous tools and particularly the discussion forums are the most used thanks to their flexibility in terms of time. To convey only the messages that belong to a theme of interest of the tutor in order to help him during his tutoring work, use of a tool for classification of these messages is indispensable. For this we have proposed a semantics classification tool of messages of a discussion forum that is based on LSA (Latent Semantic Analysis), which includes a thesaurus to organize the vocabulary. Benefits offered by formal ontology can overcome the insufficiencies that a thesaurus generates during its use and encourage us then to use it in our semantic classifier. In this work we propose the use of some functionalities that a OWL ontology proposes. We then explain how functionalities like “ObjectProperty", "SubClassOf" and “Datatype" property make our classification more intelligent by way of integrating new terms. New terms found are generated based on the first terms introduced by tutor and semantic relations described by OWL formalism.
Keywords: Classification of messages, collaborative communication tools, discussion forum, e-learning, formal description, latente semantic analysis, ontology, owl, semantic relations, semantic web, thesaurus, tutoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16175301 Effect of Temperature on the Performance of Multi-Stage Distillation
Authors: A. Diaf, H. Aburideh, Z.Tigrine, D. Tassalit, F.Alaoui
Abstract:
The tray/multi-tray distillation process is a topic that has been investigated to great detail over the last decade by many teams such as Jubran et al. [1], Adhikari et al. [2], Mowla et al. [3], Shatat et al. [4] and Fath [5] to name a few. A significant amount of work and effort was spent focusing on modeling and/simulation of specific distillation hardware designs. In this work, we have focused our efforts on investigating and gathering experimental data on several engineering and design variables to quantify their influence on the yield of the multi-tray distillation process. Our goals are to generate experimental performance data to bridge some existing gaps in the design, engineering, optimization and theoretical modeling aspects of the multi-tray distillation process.Keywords: Distillation, Desalination, Multi-Stage still, Solar Energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18095300 Military Attack Helicopter Selection Using Distance Function Measures in Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper aims to select the best military attack helicopter to purchase by the Armed Forces and provide greater reconnaissance and offensive combat capability in military operations. For this purpose, a multiple criteria decision analysis method integrated with the variance weight procedure was applied to the military attack helicopter selection problem. A real military aviation case problem is conducted to support the Armed Forces decision-making process and contributes to the better performance of the Armed Forces. Application of the methodology resulted in ranking lists for ordering and prioritizing attack helicopters, providing transparency and simplicity to the decision-making process. Nine military attack helicopter models were analyzed in the light of strategic, tactical, and operational criteria, considering attack helicopters. The selected military attack helicopter would be used for fire support and reconnaissance activities required by the Armed Forces operation. This study makes a valuable contribution to the problem of military attack helicopter selection, as it represents a state-of-the-art application of the MCDMA method to contribute to the solution of a real problem of the Armed Forces. The methodology presented in this paper can be used to solve real problems of a wide variety, especially strategic, tactical and operational, and is, therefore, a very useful method for decision making.
Keywords: aircraft selection, military attack helicopter selection, attack helicopter fleet planning, MCDMA, multiple criteria analysis, multiple criteria decision making analysis, distance function measure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9195299 Multi Band Frequency Synthesizer Based on ISPD PLL with Adapted LC Tuned VCO
Authors: Bilel Gassara, Mahmoud Abdellaoui, Nouri Masmoud
Abstract:
The 4G front-end transceiver needs a high performance which can be obtained mainly with an optimal architecture and a multi-band Local Oscillator. In this study, we proposed and presented a new architecture of multi-band frequency synthesizer based on an Inverse Sine Phase Detector Phase Locked Loop (ISPD PLL) without any filters and any controlled gain block and associated with adapted multi band LC tuned VCO using a several numeric controlled capacitive branches but not binary weighted. The proposed architecture, based on 0.35μm CMOS process technology, supporting Multi-band GSM/DCS/DECT/ UMTS/WiMax application and gives a good performances: a phase noise @1MHz -127dBc and a Factor Of Merit (FOM) @ 1MHz - 186dB and a wide band frequency range (from 0.83GHz to 3.5GHz), that make the proposed architecture amenable for monolithic integration and 4G multi-band application.Keywords: GSM/DCS/DECT/UMTS/WiMax, ISPD PLL, keep and capture range, Multi-Band, Synthesizer, Wireless.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20005298 CART Method for Modeling the Output Power of Copper Bromide Laser
Authors: Iliycho P. Iliev, Desislava S. Voynikova, Snezhana G. Gocheva-Ilieva
Abstract:
This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.
Keywords: Classification and regression trees (CART), Copper Bromide laser (CuBr laser), laser generation, nonparametric statistical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18235297 Classification of Construction Projects
Authors: M. Safa, A. Sabet, S. MacGillivray, M. Davidson, K. Kaczmarczyk, C. T. Haas, G. E. Gibson, D. Rayside
Abstract:
In order to address construction project requirements and specifications, scholars and practitioners need to establish taxonomy according to a scheme that best fits their need. While existing characterization methods are continuously being improved, new ones are devised to cover project properties which have not been previously addressed. One such method, the Project Definition Rating Index (PDRI), has received limited consideration strictly as a classification scheme. Developed by the Construction Industry Institute (CII) in 1996, the PDRI has been refined over the last two decades as a method for evaluating a project's scope definition completeness during front-end planning (FEP). The main contribution of this study is a review of practical project classification methods, and a discussion of how PDRI can be used to classify projects based on their readiness in the FEP phase. The proposed model has been applied to 59 construction projects in Ontario, and the results are discussed.Keywords: Project classification, project definition rating index (PDRI), project goals alignment, risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51935296 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals
Authors: Bharatendra Rai
Abstract:
Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.
Keywords: Degradation signal, drill-bit breakage, random forest, multinomial logistic regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22425295 Performance Determinants for Convenience Store Suppliers
Authors: Zainah Abdullah, Aznur Hajar Abdullah
Abstract:
This paper examines the impact of information and communication technology (ICT) usage, internal relationship, supplier-retailer relationship, logistics services and inventory management on convenience store suppliers- performance. Data was collected from 275 convenience store managers in Malaysia using a set of questionnaire. The multiple linear regression results indicate that inventory management, supplier-retailer relationship, logistics services and internal relationship are predictors of supplier performance as perceived by convenience store managers. However, ICT usage is not a predictor of supplier performance. The study focuses only on convenience stores and petrol station convenience stores and concentrates only on managers. The results provide insights to suppliers who serve convenience stores and possibly similar retail format on factors to consider in improving their service to retailers. The results also provide insights to government in its aspiration to improve business operations of convenience store to consider ways to enhance the adoption of ICT by retailers and suppliers.Keywords: Information and communication technology (ICT), internal relationship, inventory management, logistics services, supplier performance, supplier-retailer relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40085294 A Classification Scheme for Game Input and Output
Authors: P. Prema, B. Ramadoss
Abstract:
Computer game industry has experienced exponential growth in recent years. A game is a recreational activity involving one or more players. Game input is information such as data, commands, etc., which is passed to the game system at run time from an external source. Conversely, game outputs are information which are generated by the game system and passed to an external target, but which is not used internally by the game. This paper identifies a new classification scheme for game input and output, which is based on player-s input and output. Using this, relationship table for game input classifier and output classifier is developed.Keywords: Game Classification, Game Input, Game Output, Game Testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19825293 On Method of Fundamental Solution for Nondestructive Testing
Abstract:
Nondestructive testing in engineering is an inverse Cauchy problem for Laplace equation. In this paper the problem of nondestructive testing is expressed by a Laplace-s equation with third-kind boundary conditions. In order to find unknown values on the boundary, the method of fundamental solution is introduced and realized. Because of the ill-posedness of studied problems, the TSVD regularization technique in combination with L-curve criteria and Generalized Cross Validation criteria is employed. Numerical results are shown that the TSVD method combined with L-curve criteria is more efficient than the TSVD method combined with GCV criteria. The abstract goes here.Keywords: ill-posed, TSVD, Laplace's equation, inverse problem, L-curve, Generalized Cross Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14745292 Emotion Classification for Students with Autism in Mathematics E-learning using Physiological and Facial Expression Measures
Authors: Hui-Chuan Chu, Min-Ju Liao, Wei-Kai Cheng, William Wei-Jen Tsai, Yuh-Min Chen
Abstract:
Avoiding learning failures in mathematics e-learning environments caused by emotional problems in students with autism has become an important topic for combining of special education with information and communications technology. This study presents an adaptive emotional adjustment model in mathematics e-learning for students with autism, emphasizing the lack of emotional perception in mathematics e-learning systems. In addition, an emotion classification for students with autism was developed by inducing emotions in mathematical learning environments to record changes in the physiological signals and facial expressions of students. Using these methods, 58 emotional features were obtained. These features were then processed using one-way ANOVA and information gain (IG). After reducing the feature dimension, methods of support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were used to classify four emotional categories: baseline, happy, angry, and anxious. After testing and comparisons, in a situation without feature selection, the accuracy rate of the SVM classification can reach as high as 79.3-%. After using IG to reduce the feature dimension, with only 28 features remaining, SVM still has a classification accuracy of 78.2-%. The results of this research could enhance the effectiveness of eLearning in special education.
Keywords: Emotion classification, Physiological and facial Expression measures, Students with autism, Mathematics e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17815291 Dynamic Action Induced By Walking Pedestrian
Authors: J. Kala, V. Salajka, P. Hradil
Abstract:
The main focus of this paper is on the human induced forces. Almost all existing force models for this type of load (defined either in the time or frequency domain) are developed from the assumption of perfect periodicity of the force and are based on force measurements conducted on rigid (i.e. high frequency) surfaces. To verify the different authors conclusions the vertical pressure measurements invoked during the walking was performed, using pressure gauges in various configurations. The obtained forces are analyzed using Fourier transformation. This load is often decisive in the design of footbridges. Design criteria and load models proposed by widely used standards and other researchers were introduced and a comparison was made.Keywords: Pedestrian action, Experimental analysis, Fourier series, serviceability, cycle loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24495290 Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image
Authors: K. Muthukannan, P. Latha
Abstract:
In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).Keywords: Image Cropping, Classification, Color, Fuzzy Rule, Feature Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18885289 Correlation-based Feature Selection using Ant Colony Optimization
Authors: M. Sadeghzadeh, M. Teshnehlab
Abstract:
Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.
Keywords: Ant colony optimization, Classification, Datamining, Feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24205288 Using the PARIS Method for Multiple Criteria Decision Making in Unmanned Combat Aircraft Evaluation and Selection
Authors: C. Ardil
Abstract:
Unmanned combat aircraft (UCA) are expanding significantly in several defense industries, along with artificial intelligence improvements in highly precise technology. UCA is crucial in military settings for targeting enemy elements, and objects. UCA is also utilized for highly precise reconnaissance and surveillance tasks. To select the best alternative for critical missions, a methodical and effective strategy for UCA selection is required. Multiple criteria decision-making (MCDM) methodologies are ideally equipped to handle the complexity of alternative aircraft selection. To analyze UCA alternatives for the selection process, an integrated methodology built on the objective criteria weights and preference analysis for reference ideal solution (PARIS). First, the weights of essential elements are determined using the average weight (AW), standard deviation (SW) and entropy weight (EW) approach. The weights of the evaluation criteria affect the decision-making process. The aircraft choices in the decision problem are then ranked using objective criteria weights along with the PARIS technique. The validation and sensitivity analysis of the proposed MCDM approach are discussed.
Keywords: unmanned combat aircraft (UCA), multiple criteria decision making, MCDM, PARIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4745287 A New Approach for the Fingerprint Classification Based On Gray-Level Co- Occurrence Matrix
Authors: Mehran Yazdi, Kazem Gheysari
Abstract:
In this paper, we propose an approach for the classification of fingerprint databases. It is based on the fact that a fingerprint image is composed of regular texture regions that can be successfully represented by co-occurrence matrices. So, we first extract the features based on certain characteristics of the cooccurrence matrix and then we use these features to train a neural network for classifying fingerprints into four common classes. The obtained results compared with the existing approaches demonstrate the superior performance of our proposed approach.
Keywords: Biometrics, fingerprint classification, gray level cooccurrence matrix, regular texture representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19665286 Satellite Data Classification Accuracy Assessment Based from Reference Dataset
Authors: Mohd Hasmadi Ismail, Kamaruzaman Jusoff
Abstract:
In order to develop forest management strategies in tropical forest in Malaysia, surveying the forest resources and monitoring the forest area affected by logging activities is essential. There are tremendous effort has been done in classification of land cover related to forest resource management in this country as it is a priority in all aspects of forest mapping using remote sensing and related technology such as GIS. In fact classification process is a compulsory step in any remote sensing research. Therefore, the main objective of this paper is to assess classification accuracy of classified forest map on Landsat TM data from difference number of reference data (200 and 388 reference data). This comparison was made through observation (200 reference data), and interpretation and observation approaches (388 reference data). Five land cover classes namely primary forest, logged over forest, water bodies, bare land and agricultural crop/mixed horticultural can be identified by the differences in spectral wavelength. Result showed that an overall accuracy from 200 reference data was 83.5 % (kappa value 0.7502459; kappa variance 0.002871), which was considered acceptable or good for optical data. However, when 200 reference data was increased to 388 in the confusion matrix, the accuracy slightly improved from 83.5% to 89.17%, with Kappa statistic increased from 0.7502459 to 0.8026135, respectively. The accuracy in this classification suggested that this strategy for the selection of training area, interpretation approaches and number of reference data used were importance to perform better classification result.Keywords: Image Classification, Reference Data, Accuracy Assessment, Kappa Statistic, Forest Land Cover
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31415285 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20535284 A Comparative Study on the Financial Characteristics for Development Methods of Urban Development Project - Focusing on Multi-level Replotting Method -
Authors: Jin hui Kim, Hyung kwan Cho, Ji won Moon, Hoon Chang
Abstract:
The purpose of this study is comparing and analysing of the financial characteristics for development methods of the urban development project in the established area, focusing on the multi-level replotting. Analysis showed that the type of the lowest expenditure was 'combination type of group-land and multi-level replotting' and the type of the highest profitability was 'multi-level replotting type'. But 'multi-level replotting type' has still risk of amount of cost for the additional architecture. In addition, we subdivided standard amount for liquidation of replotting and analysed income-expenditure flow. Analysis showed that both of 'multi-level replotting type' and 'combination type of group-land and multi-level replotting' improved profitability of project and property change ratio. However, when the standard was under a certain amount, amount of original property for the replotting was increased exponentially, and profitability of project.Keywords: Urban development, multi-level replotting, financial characteristics, expropriation type, combination type, urban meteorology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15685283 Multi Antenna Systems for 5G Mobile Phones
Authors: Muhammad N. Khan, Syed O. Gillani, Mohsin Jamil, Tarbia Iftikhar
Abstract:
With the increasing demand of bandwidth and data rate, there is a dire need to implement antenna systems in mobile phones which are able to fulfill user requirements. A monopole antenna system with multi-antennas configurations is proposed considering the feasibility and user demand. The multi-antenna structure is referred to as multi-input multi-output (MIMO) antenna system. The multi-antenna system comprises of 4 antennas operating below 6 GHz frequency bands for 4G/LTE and 4 antenna for 5G applications at 28 GHz and the dimension of board is 120 × 70 × 0.8mm3. The suggested designs is feasible with a structure of low-profile planar-antenna and is adaptable to smart cell phones and handheld devices. To the best of our knowledge, this is the first design compared to the literature by having integrated antenna system for two standards, i.e., 4G and 5G. All MIMO antenna systems are simulated on commercially available software, which is high frequency structures simulator (HFSS).Keywords: High frequency structures simulator (HFSS), mutli-input multi-output (MIMO), monopole antenna, slot antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18915282 Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms
Authors: Mohamed Hamdaoui, Jean-Baptiste Mouret, Stephane Doncieux, Pierre Sagaut
Abstract:
The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.
Keywords: Flight physics, evolutionary algorithm, optimization, Pareto surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16465281 Active Segment Selection Method in EEG Classification Using Fractal Features
Authors: Samira Vafaye Eslahi
Abstract:
BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.
Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21205280 Pattern Recognition of Partial Discharge by Using Simplified Fuzzy ARTMAP
Authors: S. Boonpoke, B. Marungsri
Abstract:
This paper presents the effectiveness of artificial intelligent technique to apply for pattern recognition and classification of Partial Discharge (PD). Characteristics of PD signal for pattern recognition and classification are computed from the relation of the voltage phase angle, the discharge magnitude and the repeated existing of partial discharges by using statistical and fractal methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern recognition and classification as artificial intelligent technique. PDs quantities, 13 parameters from statistical method and fractal method results, are inputted to Simplified Fuzzy ARTMAP to train system for pattern recognition and classification. The results confirm the effectiveness of purpose technique.Keywords: Partial discharges, PD Pattern recognition, PDClassification, Artificial intelligent, Simplified Fuzzy ARTMAP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30845279 A Survey of Baseband Architecture for Software Defined Radio
Authors: M. A. Fodha, H. Benfradj, A. Ghazel
Abstract:
This paper is a survey of recent works that proposes a baseband processor architecture for software defined radio. A classification of different approaches is proposed. The performance of each architecture is also discussed in order to clarify the suitable approaches that meet software-defined radio constraints.Keywords: Multi-core architectures, reconfigurable architecture, software defined radio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14585278 Integrated Approaches to Enhance Aggregate Production Planning with Inventory Uncertainty Based On Improved Harmony Search Algorithm
Authors: P. Luangpaiboon, P. Aungkulanon
Abstract:
This work presents a multiple objective linear programming (MOLP) model based on the desirability function approach for solving the aggregate production planning (APP) decision problem upon Masud and Hwang-s model. The proposed model minimises total production costs, carrying or backordering costs and rates of change in labor levels. An industrial case demonstrates the feasibility of applying the proposed model to the APP problems with three scenarios of inventory levels. The proposed model yields an efficient compromise solution and the overall levels of DM satisfaction with the multiple combined response levels. There has been a trend to solve complex planning problems using various metaheuristics. Therefore, in this paper, the multi-objective APP problem is solved by hybrid metaheuristics of the hunting search (HuSIHSA) and firefly (FAIHSA) mechanisms on the improved harmony search algorithm. Results obtained from the solution of are then compared. It is observed that the FAIHSA can be used as a successful alternative solution mechanism for solving APP problems over three scenarios. Furthermore, the FAIHSA provides a systematic framework for facilitating the decision-making process, enabling a decision maker interactively to modify the desirability function approach and related model parameters until a good optimal solution is obtained with proper selection of control parameters when compared.
Keywords: Aggregate Production Planning, Desirability Function Approach, Improved Harmony Search Algorithm, Hunting Search Algorithm and Firefly Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19275277 Development of Fake News Model Using Machine Learning through Natural Language Processing
Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini
Abstract:
Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.
Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15125276 A Description Logics Based Approach for Building Multi-Viewpoints Ontologies
Authors: M. Hemam, M. Djezzar, T. Djouad
Abstract:
We are interested in the problem of building an ontology in a heterogeneous organization, by taking into account different viewpoints and different terminologies of communities in the organization. Such ontology, that we call multi-viewpoint ontology, confers to the same universe of discourse, several partial descriptions, where each one is relative to a particular viewpoint. In addition, these partial descriptions share at global level, ontological elements constituent a consensus between the various viewpoints. In order to provide response elements to this problem we define a multi-viewpoints knowledge model based on viewpoint and ontology notions. The multi-viewpoints knowledge model is used to formalize the multi-viewpoints ontology in description logics language.Keywords: Description logic, knowledge engineering, ontology, viewpoint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10235275 Cloud Computing Security for Multi-Cloud Service Providers: Controls and Techniques in our Modern Threat Landscape
Authors: Sandesh Achar
Abstract:
Cloud computing security is a broad term that covers a variety of security concerns for organizations that use cloud services. Multi-cloud service providers must consider several factors when addressing security for their customers, including identity and access management, data at rest and in transit, egress and ingress traffic control, vulnerability and threat management, and auditing. This paper explores each of these aspects of cloud security in detail and provides recommendations for best practices for multi-cloud service providers. It also discusses the challenges inherent in securing a multi-cloud environment and offers solutions for overcoming these challenges. By the end of this paper, readers should have a good understanding of the various security concerns associated with multi-cloud environments in the context of today’s modern cyber threats and how to address them.
Keywords: Multi-cloud service, SOC, system organization control, data loss prevention, DLP, identity and access management, IAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7065274 A Soft Set based Group Decision Making Method with Criteria Weight
Authors: Samsiah Abdul Razak, Daud Mohamad
Abstract:
Molodstov-s soft sets theory was originally proposed as general mathematical tool for dealing with uncertainty problems. The matrix form has been introduced in soft set and some of its properties have been discussed. However, the formulation of soft matrix in group decision making problem only with equal importance weights of criteria, which does not show the true opinion of decision maker on each criteria. The aim of this paper is to propose a method for solving group decision making problem incorporating the importance of criteria by using soft matrices in a more objective manner. The weight of each criterion is calculated by using the Analytic Hierarchy Process (AHP) method. An example of house selection process is given to illustrate the effectiveness of the proposed method.Keywords: Soft set, Soft Matrix, Soft max-min decision making (SMmDM), Analytic hierarchy process (AHP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19005273 Mathematical Modeling of Non-Isothermal Multi-Component Fluid Flow in Pipes Applying to Rapid Gas Decompression in Rich and Base Gases
Authors: Evgeniy Burlutskiy
Abstract:
The paper presents a one-dimensional transient mathematical model of compressible non-isothermal multicomponent fluid mixture flow in a pipe. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales- Eakin (LGE) correlation. Numerical analysis of rapid gas decompression process in rich and base natural gases is made on the basis of the proposed mathematical model. The model is successfully validated on the experimental data [1]. The proposed mathematical model shows a very good agreement with the experimental data [1] in a wide range of pressure values and predicts the decompression in rich and base gas mixtures much better than analytical and mathematical models, which are available from the open source literature.Keywords: Mathematical model, Multi-Component gas mixture flow, Rapid Gas Decompression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952