Search results for: Intention recognition
557 Hand Gestures Based Emotion Identification Using Flex Sensors
Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan
Abstract:
In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.
Keywords: Emotion identification, emotion models, gesture recognition, user perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940556 Development of a Pipeline Monitoring System by Bio-mimetic Robots
Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won
Abstract:
To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649555 Robust Features for Impulsive Noisy Speech Recognition Using Relative Spectral Analysis
Authors: Hajer Rahali, Zied Hajaiej, Noureddine Ellouze
Abstract:
The goal of speech parameterization is to extract the relevant information about what is being spoken from the audio signal. In speech recognition systems Mel-Frequency Cepstral Coefficients (MFCC) and Relative Spectral Mel-Frequency Cepstral Coefficients (RASTA-MFCC) are the two main techniques used. It will be shown in this paper that it presents some modifications to the original MFCC method. In our work the effectiveness of proposed changes to MFCC called Modified Function Cepstral Coefficients (MODFCC) were tested and compared against the original MFCC and RASTA-MFCC features. The prosodic features such as jitter and shimmer are added to baseline spectral features. The above-mentioned techniques were tested with impulsive signals under various noisy conditions within AURORA databases.
Keywords: Auditory filter, impulsive noise, MFCC, prosodic features, RASTA filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323554 Retrieval of User Specific Images Using Semantic Signatures
Authors: K. Venkateswari, U. K. Balaji Saravanan, K. Thangaraj, K. V. Deepana
Abstract:
Image search engines rely on the surrounding textual keywords for the retrieval of images. It is a tedious work for the search engines like Google and Bing to interpret the user’s search intention and to provide the desired results. The recent researches also state that the Google image search engines do not work well on all the images. Consequently, this leads to the emergence of efficient image retrieval technique, which interprets the user’s search intention and shows the desired results. In order to accomplish this task, an efficient image re-ranking framework is required. Sequentially, to provide best image retrieval, the new image re-ranking framework is experimented in this paper. The implemented new image re-ranking framework provides best image retrieval from the image dataset by making use of re-ranking of retrieved images that is based on the user’s desired images. This is experimented in two sections. One is offline section and other is online section. In offline section, the reranking framework studies differently (reference classes or Semantic Spaces) for diverse user query keywords. The semantic signatures get generated by combining the textual and visual features of the images. In the online section, images are re-ranked by comparing the semantic signatures that are obtained from the reference classes with the user specified image query keywords. This re-ranking methodology will increases the retrieval image efficiency and the result will be effective to the user.
Keywords: CBIR, Image Re-ranking, Image Retrieval, Semantic Signature, Semantic Space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938553 Learning Flexible Neural Networks for Pattern Recognition
Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh
Abstract:
Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494552 A New Biometric Human Identification Based On Fusion Fingerprints and Finger Veins Using monoLBP Descriptor
Authors: Alima Damak Masmoudi, Randa Boukhris Trabelsi, Dorra Sellami Masmoudi
Abstract:
Single biometric modality recognition is not able to meet the high performance supplies in most cases with its application become more and more broadly. Multimodal biometrics identification represents an emerging trend recently. This paper investigates a novel algorithm based on fusion of both fingerprint and fingervein biometrics. For both biometric recognition, we employ the Monogenic Local Binary Pattern (MonoLBP). This operator integrate the orginal LBP (Local Binary Pattern ) with both other rotation invariant measures: local phase and local surface type. Experimental results confirm that a weighted sum based proposed fusion achieves excellent identification performances opposite unimodal biometric systems. The AUC of proposed approach based on combining the two modalities has very close to unity (0.93).
Keywords: fingerprint, fingervein, LBP, MonoLBP, fusion, biometric trait.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391551 A Fast Sign Localization System Using Discriminative Color Invariant Segmentation
Authors: G.P. Nguyen, H.J. Andersen
Abstract:
Building intelligent traffic guide systems has been an interesting subject recently. A good system should be able to observe all important visual information to be able to analyze the context of the scene. To do so, signs in general, and traffic signs in particular, are usually taken into account as they contain rich information to these systems. Therefore, many researchers have put an effort on sign recognition field. Sign localization or sign detection is the most important step in the sign recognition process. This step filters out non informative area in the scene, and locates candidates in later steps. In this paper, we apply a new approach in detecting sign locations using a new color invariant model. Experiments are carried out with different datasets introduced in other works where authors claimed the difficulty in detecting signs under unfavorable imaging conditions. Our method is simple, fast and most importantly it gives a high detection rate in locating signs.Keywords: Sign localization, color-based segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293550 A Review in Advanced Digital Signal Processing Systems
Authors: Roza Dastres, Mohsen Soori
Abstract:
Digital Signal Processing (DSP) is the use of digital processing systems by computers in order to perform a variety of signal processing operations. It is the mathematical manipulation of a digital signal's numerical values in order to increase quality as well as effects of signals. DSP can include linear or nonlinear operators in order to process and analyze the input signals. The nonlinear DSP processing is closely related to nonlinear system detection and can be implemented in time, frequency and space-time domains. Applications of the DSP can be presented as control systems, digital image processing, biomedical engineering, speech recognition systems, industrial engineering, health care systems, radar signal processing and telecommunication systems. In this study, advanced methods and different applications of DSP are reviewed in order to move forward the interesting research filed.Keywords: Digital signal processing, advanced telecommunication, nonlinear signal processing, speech recognition systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038549 Factors Associated with Mammography Screening Behaviors: A Cross-Sectional Descriptive Study of Egyptian Women
Authors: Salwa Hagag Abdelaziz, Naglaa Fathy Youssef, Nadia Abdel Latif Hassan, Rasha Wesam Abdel Rahman
Abstract:
Breast cancer is considered as a substantial health concern and practicing mammography screening [MS] is important in minimizing its related morbidity. So it is essential to have a better understanding of breast cancer screening behaviors of women and factors that influence utilization of them. The aim of this study is to identify the factors that are linked to MS behaviors among the Egyptian women. A cross-sectional descriptive design was carried out to provide a snapshot of the factors that are linked to MS behaviors. A convenience sample of 311 women was utilized and all eligible participants admitted to the Women Imaging Unit who are 40 years of age or above, coming for mammography assessment, not pregnant or breast feeding and who accepted to participate in the study were included. A structured questionnaire was developed by the researchers and contains three parts; Socio-demographic data; Motivating factors associated with MS; and association between MS and model of behavior change. The analyzed data indicated that most of the participated women (66.6%) belonged to the age group of 40- 49.A high proportion of participants (58.1%) of group having previous MS influenced by their neighbors to practice MS, whereas 32.7 % in group not having previous MS were influenced by family members which indicated significant differences (P <0.05). Doctors and media shown to be the least influence of others to practice MS. Women with intention to have a future mammogram had higher OR (1.404) for practicing MS compared with women with no intention. Further studies are needed to examine the relation between Transtheoretical Model [TTM] and practicing MS.
Keywords: Breast cancer, mammography, screening behaviors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148548 Emergentist Metaphorical Creativity: Towards a Model of Analysing Metaphorical Creativity in Interactive Talk
Authors: Afef Badri
Abstract:
Metaphorical creativity does not constitute a static property of discourse. It is an interactive dynamic process created online. There has been a lack of research concerning online produced metaphorical creativity. This paper intends to account for metaphorical creativity in online talk-in-interaction as a dynamic process that emerges as discourse unfolds. It brings together insights from the emergentist approach to the study of metaphor in verbal interactions and insights from conceptual blending approach as a model for analysing online metaphorical constructions to propose a model for studying metaphorical creativity in interactive talk. The model is based on three focal points. First, metaphorical creativity is a dynamic emergent and open-to-change process that evolves in real time as interlocutors constantly blend and re-blend previous metaphorical contributions. Second, it is not a product of isolated individual minds but a joint achievement that is co-constructed and co-elaborated by interlocutors. The third and most important point is that the emergent process of metaphorical creativity is tightly shaped by contextual variables surrounding talk-in-interaction. It is grounded in the framework of interpretation of interlocutors. It is constrained by preceding contributions in a way that creates textual cohesion of the verbal exchange and it is also a goal-oriented process predefined by the communicative intention of each participant in a way that reveals the ideological coherence/incoherence of the entire conversation.
Keywords: Communicative intention, conceptual blending, contextual variables, the emergentist approach, ideological coherence, metaphorical creativity, textual cohesion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048547 Sharing Tourism Experience through Social Media: Consumer's Behavioral Intention for Destination Choice
Authors: Mohammad Tipu Sultan, Farzana Sharmin, Ke Xue
Abstract:
Social media create a better opportunity for travelers to search for travel information, select destination and share their personal experiences of the travel. This study proposes a framework which describes the relationships between social media, and positive or negative tourism experience sharing impact on destination choice. To find out new trends of travelers behavioral intention, we propose an extended theoretical model, the Theory of Reasoned Action (TRA). We conducted a survey to analyze three external factors, subjective norms, and positive and negative experience influence on travel destination choice. Structural questionnaire analysis was employed to confirm the proposed research hypothesis within the relationship between consumer influences on the shared experience of social media. The results of the study confirm that sharing positive experiences influence the positive effect of destination choice, while negative experiences decrease the destination selection option. The results indicate that attitudes, subjective norms are passively influenced by shared experience. Moreover, we find that sharing live pictures of travel experiences through social media helps to reduce negative perceptions of the destination brand. This research contribution is useable to the research field as a new determination factor and the findings could be used by destination organization management (DMO) to enhancing their tourism promotion through social media.
Keywords: Destination choice, tourism experience sharing, Theory of Reasoned Action, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488546 An Integrated Cognitive Performance Evaluation Framework for Urban Search and Rescue Applications
Authors: Antonio D. Lee, Steven X. Jiang
Abstract:
A variety of techniques and methods are available to evaluate cognitive performance in Urban Search and Rescue (USAR) applications. However, traditional cognitive performance evaluation techniques typically incorporate either the conscious or systematic aspect, failing to take into consideration the subconscious or intuitive aspect. This leads to incomplete measures and produces ineffective designs. In order to fill the gaps in past research, this study developed a theoretical framework to facilitate the integration of situation awareness (SA) and intuitive pattern recognition (IPR) to enhance the cognitive performance representation in USAR applications. This framework provides guidance to integrate both SA and IPR in order to evaluate the cognitive performance of the USAR responders. The application of this framework will help improve the system design.Keywords: Cognitive performance, intuitive pattern recognition, situation awareness, urban search and rescue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495545 Voice Features as the Diagnostic Marker of Autism
Authors: Elena Lyakso, Olga Frolova, Yuri Matveev
Abstract:
The aim of the study is to determine the acoustic features of voice and speech of children with autism spectrum disorders (ASD) as a possible additional diagnostic criterion. The participants in the study were 95 children with ASD aged 5-16 years, 150 typically development (TD) children, and 103 adults – listening to children’s speech samples. Three types of experimental methods for speech analysis were performed: spectrographic, perceptual by listeners, and automatic recognition. In the speech of children with ASD, the pitch values, pitch range, values of frequency and intensity of the third formant (emotional) leading to the “atypical” spectrogram of vowels are higher than corresponding parameters in the speech of TD children. High values of vowel articulation index (VAI) are specific for ASD children’s speech signals. These acoustic features can be considered as diagnostic marker of autism. The ability of humans and automatic recognition of the psychoneurological state of children via their speech is determined.
Keywords: Autism spectrum disorders, biomarker of autism, child speech, voice features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 619544 Vision Based Hand Gesture Recognition
Authors: Pragati Garg, Naveen Aggarwal, Sanjeev Sofat
Abstract:
With the development of ubiquitous computing, current user interaction approaches with keyboard, mouse and pen are not sufficient. Due to the limitation of these devices the useable command set is also limited. Direct use of hands as an input device is an attractive method for providing natural Human Computer Interaction which has evolved from text-based interfaces through 2D graphical-based interfaces, multimedia-supported interfaces, to fully fledged multi-participant Virtual Environment (VE) systems. Imagine the human-computer interaction of the future: A 3Dapplication where you can move and rotate objects simply by moving and rotating your hand - all without touching any input device. In this paper a review of vision based hand gesture recognition is presented. The existing approaches are categorized into 3D model based approaches and appearance based approaches, highlighting their advantages and shortcomings and identifying the open issues.Keywords: Computer Vision, Hand Gesture, Hand Posture, Human Computer Interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6342543 Tracking Objects in Color Image Sequences: Application to Football Images
Authors: Mourad Moussa, Ali Douik, Hassani Messaoud
Abstract:
In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.
Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985542 Medical Image Edge Detection Based on Neuro-Fuzzy Approach
Authors: J. Mehena, M. C. Adhikary
Abstract:
Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.Keywords: Edge detection, neuro-fuzzy, image segmentation, artificial image, object recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282541 Neural Network Based Speech to Text in Malay Language
Authors: H. F. A. Abdul Ghani, R. R. Porle
Abstract:
Speech to text in Malay language is a system that converts Malay speech into text. The Malay language recognition system is still limited, thus, this paper aims to investigate the performance of ten Malay words obtained from the online Malay news. The methodology consists of three stages, which are preprocessing, feature extraction, and speech classification. In preprocessing stage, the speech samples are filtered using pre emphasis. After that, feature extraction method is applied to the samples using Mel Frequency Cepstrum Coefficient (MFCC). Lastly, speech classification is performed using Feedforward Neural Network (FFNN). The accuracy of the classification is further investigated based on the hidden layer size. From experimentation, the classifier with 40 hidden neurons shows the highest classification rate which is 94%.
Keywords: Feed-Forward Neural Network, FFNN, Malay speech recognition, Mel Frequency Cepstrum Coefficient, MFCC, speech-to-text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746540 Human Facial Expression Recognition using MANFIS Model
Authors: V. Gomathi, Dr. K. Ramar, A. Santhiyaku Jeevakumar
Abstract:
Facial expression analysis plays a significant role for human computer interaction. Automatic analysis of human facial expression is still a challenging problem with many applications. In this paper, we propose neuro-fuzzy based automatic facial expression recognition system to recognize the human facial expressions like happy, fear, sad, angry, disgust and surprise. Initially facial image is segmented into three regions from which the uniform Local Binary Pattern (LBP) texture features distributions are extracted and represented as a histogram descriptor. The facial expressions are recognized using Multiple Adaptive Neuro Fuzzy Inference System (MANFIS). The proposed system designed and tested with JAFFE face database. The proposed model reports 94.29% of classification accuracy.Keywords: Adaptive neuro-fuzzy inference system, Facialexpression, Local binary pattern, Uniform Histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103539 Development of a Computer Vision System for the Blind and Visually Impaired Person
Authors: Roselyn A. Maaño
Abstract:
Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may results from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.
Keywords: Algorithms, Blind, Computer Vision, Embedded Systems, Image Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3610538 A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations
Authors: Satyanadh Gundimada, Vijayan K Asari
Abstract:
A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.
Keywords: Discriminant analysis, intra-class probability distribution, principal component analysis, phase congruency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850537 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.
Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247536 A Robust Method for Hand Tracking Using Mean-shift Algorithm and Kalman Filter in Stereo Color Image Sequences
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Robert Niese, Bernd Michaelis
Abstract:
Real-time hand tracking is a challenging task in many computer vision applications such as gesture recognition. This paper proposes a robust method for hand tracking in a complex environment using Mean-shift analysis and Kalman filter in conjunction with 3D depth map. The depth information solve the overlapping problem between hands and face, which is obtained by passive stereo measuring based on cross correlation and the known calibration data of the cameras. Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity function to derive the candidate of the hand that is most similar to a given hand target model. And then, Kalman filter is used to estimate the position of the hand target. The results of hand tracking, tested on various video sequences, are robust to changes in shape as well as partial occlusion.Keywords: Computer Vision and Image Analysis, Object Tracking, Gesture Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919535 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing
Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä
Abstract:
Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.Keywords: Feature recognition, automation, sheet metal manufacturing, CAM, CAD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150534 The Content Based Objective Metrics for Video Quality Evaluation
Authors: Michal Mardiak, Jaroslav Polec
Abstract:
In this paper we proposed comparison of four content based objective metrics with results of subjective tests from 80 video sequences. We also include two objective metrics VQM and SSIM to our comparison to serve as “reference” objective metrics because their pros and cons have already been published. Each of the video sequence was preprocessed by the region recognition algorithm and then the particular objective video quality metric were calculated i.e. mutual information, angular distance, moment of angle and normalized cross-correlation measure. The Pearson coefficient was calculated to express metrics relationship to accuracy of the model and the Spearman rank order correlation coefficient to represent the metrics relationship to monotonicity. The results show that model with the mutual information as objective metric provides best result and it is suitable for evaluating quality of video sequences.
Keywords: Objective quality metrics, mutual information, region recognition, content based metrics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506533 Composite Kernels for Public Emotion Recognition from Twitter
Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang
Abstract:
The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.
Keywords: Public emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773532 Representation of Memory of Forced Displacement in Central and Eastern Europe after World War II in Polish and German Cinemas
Authors: Ilona Copik
Abstract:
The aim of this study is to analyze the representation of memories of the forced displacement of Poles and Germans from the eastern territories in 1945 as depicted by Polish and German feature films between the years 1945-1960. The aftermath of World War II and the Allied agreements concluded at Yalta and Potsdam (1945) resulted in changes in national borders in Central and Eastern Europe and the large-scale transfer of civilians. The westward migration became a symbol of the new post-war division of Europe, new spheres of influence separated by the Iron Curtain. For years it was a controversial topic in both Poland and Germany due to the geopolitical alignment (the socialist East and capitalist West of Europe), as well as the unfinished debate between the victims and perpetrators of the war. The research premise is to take a comparative view of the conflicted cultures of Polish and German memory, to reflect on the possibility of an international dialogue about the past recorded in film images, and to discover the potential of film as a narrative warning against totalitarian inclinations. Until now, films made between 1945 and 1960 in Poland and the German occupation zones have been analyzed mainly in the context of artistic strategies subordinated to ideology and historical politics. In this study, the intention is to take a critical approach leading to the recognition of how films work as collective memory media, how they reveal the mechanisms of memory/ forgetting, and what settlement topoi and migration myths they contain. The main hypothesis is that feature films about forced displacement, in addition to the politics of history - separate in each country - reveal comparable transnational individual experiences: the chaos of migration, the trauma of losing one's home, the conflicts accompanying the familiar/foreign, the difficulty of cultural adaptation, the problem of lost identity, etc.
Keywords: Forced displacement, Polish and German cinema, war victims, World War II.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151531 Aliveness Detection of Fingerprints using Multiple Static Features
Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim
Abstract:
Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925530 Enhancing Human-Computer Interaction and Feedback in Touchscreen Icon
Authors: Hsinfu Huang Li-Hao Chen
Abstract:
In order to enhance the usability of the human computer interface (HCI) on the touchscreen, this study explored the optimal tactile depth and effect of visual cues on the user-s tendency to touch the touchscreen icons. The experimental program was designed on the touchscreen in this study. Results indicated that the ratio of the icon size to the tactile depth was 1:0.106. There were significant effects of experienced users and novices on the tactile feedback depth (p < 0.01). In addition, the results proved that the visual cues provided a feedback that helped to guide the user-s touch icons accurately and increased the capture efficiency for a tactile recognition field. This tactile recognition field was 18.6 mm in length. There was consistency between the experienced users and novices under the visual cue effects. Finally, the study developed an applied design with touch feedback for touchscreen icons.
Keywords: HCI, Touchscreen icon, Touch feedback, Optimaltactile depth, Visual cues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214529 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: Texture classification, texture descriptor, SIFT, SURF, ORB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601528 Sound Instance: Art, Perception and Composition through Soundscapes
Authors: Ricardo Mestre
Abstract:
The soundscape stands out as an agglomeration of sounds available in the world, associated with different contexts and origins, being a theme studied by various areas of knowledge, seeking to guide their benefits and their consequences, contributing to the welfare of society and other ecosystems. With the objective for a greater recognition of sound reality, through the selection and differentiation of sounds, the soundscape studies focus on the contribution for a better tuning of the world and to the balance and well-being of humanity. Sound environment, produced and created in various ways, can provide various sources of information, contributing to the orientation of the human being, alerting and manipulating him during his daily journey, like small notifications received on a cell phone or other device with these features. In this way, it becomes possible to give sound its due importance in relation to the processes of individual representation, in manners of social, professional and emotional life. Ensuring an individual representation means providing the human being with new tools for the long process of reflection by recognizing his environment, the sounds that represent him, and his perspective on his respective function in it. In order to provide more information about the importance of the sound environment inherent to the individual reality, one introduces the term sound instance, in order to refer to the whole sound field existing in the individual's life, which is divided into four distinct subfields, but essential to the process of individual representation, called sound matrix, sound cycles, sound traces and sound interference. Alongside volunteers we were able to create six representations of sound instances, based on the individual perception of his/her life, focusing on the present, past and future. With this investigation it was possible to determine that sound instance has a tool for self-recognition, considering the statements of opinion about the experience from the volunteers, reflecting about the three time lines, based on memories, thoughts and wishes.
Keywords: Sound instance, soundscape, sound art, self-recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578