Search results for: Image Mining
1628 Fuzzy Mathematical Morphology approach in Image Processing
Authors: Yee Yee Htun, Dr. Khaing Khaing Aye
Abstract:
Morphological operators transform the original image into another image through the interaction with the other image of certain shape and size which is known as the structure element. Mathematical morphology provides a systematic approach to analyze the geometric characteristics of signals or images, and has been applied widely too many applications such as edge detection, objection segmentation, noise suppression and so on. Fuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations such as fuzzy erosion, dilation, opening and closing, a general method based upon fuzzy implication and inclusion grade operators is introduced. The fuzzy morphological operations extend the ordinary morphological operations by using fuzzy sets where for fuzzy sets, the union operation is replaced by a maximum operation, and the intersection operation is replaced by a minimum operation. In this work, it consists of two articles. In the first one, fuzzy set theory, fuzzy Mathematical morphology which is based on fuzzy logic and fuzzy set theory; fuzzy Mathematical operations and their properties will be studied in details. As a second part, the application of fuzziness in Mathematical morphology in practical work such as image processing will be discussed with the illustration problems.Keywords: Binary Morphological, Fuzzy sets, Grayscalemorphology, Image processing, Mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32471627 Evaluation of Classifiers Based On I2C Distance for Action Recognition
Authors: Lei Zhang, Tao Wang, Xiantong Zhen
Abstract:
Naive Bayes Nearest Neighbor (NBNN) and its variants, i,e., local NBNN and the NBNN kernels, are local feature-based classifiers that have achieved impressive performance in image classification. By exploiting instance-to-class (I2C) distances (instance means image/video in image/video classification), they avoid quantization errors of local image descriptors in the bag of words (BoW) model. However, the performances of NBNN, local NBNN and the NBNN kernels have not been validated on video analysis. In this paper, we introduce these three classifiers into human action recognition and conduct comprehensive experiments on the benchmark KTH and the realistic HMDB datasets. The results shows that those I2C based classifiers consistently outperform the SVM classifier with the BoW model.
Keywords: Instance-to-class distance, NBNN, Local NBNN, NBNN kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16591626 An Edge Detection and Filtering Mechanism of Two Dimensional Digital Objects Based on Fuzzy Inference
Authors: Ayman A. Aly, Abdallah A. Alshnnaway
Abstract:
The general idea behind the filter is to average a pixel using other pixel values from its neighborhood, but simultaneously to take care of important image structures such as edges. The main concern of the proposed filter is to distinguish between any variations of the captured digital image due to noise and due to image structure. The edges give the image the appearance depth and sharpness. A loss of edges makes the image appear blurred or unfocused. However, noise smoothing and edge enhancement are traditionally conflicting tasks. Since most noise filtering behaves like a low pass filter, the blurring of edges and loss of detail seems a natural consequence. Techniques to remedy this inherent conflict often encompass generation of new noise due to enhancement. In this work a new fuzzy filter is presented for the noise reduction of images corrupted with additive noise. The filter consists of three stages. (1) Define fuzzy sets in the input space to computes a fuzzy derivative for eight different directions (2) construct a set of IFTHEN rules by to perform fuzzy smoothing according to contributions of neighboring pixel values and (3) define fuzzy sets in the output space to get the filtered and edged image. Experimental results are obtained to show the feasibility of the proposed approach with two dimensional objects.Keywords: Additive noise, edge preserving filtering, fuzzy image filtering, noise reduction, two dimensional mechanical images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681625 Color Image Segmentation using Adaptive Spatial Gaussian Mixture Model
Authors: M.Sujaritha, S. Annadurai
Abstract:
An adaptive spatial Gaussian mixture model is proposed for clustering based color image segmentation. A new clustering objective function which incorporates the spatial information is introduced in the Bayesian framework. The weighting parameter for controlling the importance of spatial information is made adaptive to the image content to augment the smoothness towards piecewisehomogeneous region and diminish the edge-blurring effect and hence the name adaptive spatial finite mixture model. The proposed approach is compared with the spatially variant finite mixture model for pixel labeling. The experimental results with synthetic and Berkeley dataset demonstrate that the proposed method is effective in improving the segmentation and it can be employed in different practical image content understanding applications.
Keywords: Adaptive; Spatial, Mixture model, Segmentation, Color.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24981624 Association of Smoking with Chest Radiographic and Lung Function Findings in Retired Bauxite Mining Workers
Authors: L. R. Ferreira, R. C. G. Bianchi, L. C.R. Ferreira, C. M. Galhardi, E. P. Baciuk, L. H. Oliveira
Abstract:
Inhalation hazards are associated with potentially injurious exposure and increased risk for lung diseases, within the bauxite mining industry, especially for the smelter workers. Smoking is related to decreased lung function and leads to chronic lung diseases. This study had the objective to evaluate whether smoking is related to functional and radiographic respiratory changes in retired bauxite mining workers. Methods: This was a retrospective and cross-sectional study involving the analysis of database information of 140 retired bauxite mining workers from Poços de Caldas-MG evaluated at Worker’s Health Reference Center and at the Social Security Brazilian National Institute, from July 1st, 2015 until June 30th, 2016. The workers were divided into three groups: non-smokers (n = 47), ex-smokers (n = 46), and smokers (n = 47). The data included: age, gender, spirometry results, and the presence or not of pulmonary pleural and/or parenchymal changes in chest radiographs. Chi-Squared test was used (p < 0,05). Results: In the smokers’ group, 83% of spirometry tests and 64% of chest x-rays were altered. In the non-smokers’ group, 19% of spirometry tests and 13% of chest x-rays were altered. In the ex-smokers’ group, 35% of spirometry tests and 30% of chest x-rays were altered. Most of the results were statistically significant. Results demonstrated a significant difference between smokers’ and non-smokers’ groups in regard to spirometric and radiographic pulmonary alterations. Ex-smokers’ and non-smokers’ group demonstrated better results when compared to the smokers’ group in relation to altered spirometry and radiograph findings. These data may contribute to planning strategies to enhance smoking cessation programs within the bauxite mining industry.
Keywords: Bauxite mining, spirometry, chest radiography, smoking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7011623 Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks
Authors: Lewis E. Hibell, Honghai Liu, David J. Brown
Abstract:
This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.Keywords: Image Enhancement, Neural Networks, Multi-Frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11941622 Hidden State Probabilistic Modeling for Complex Wavelet Based Image Registration
Authors: F. C. Calnegru
Abstract:
This article presents a computationally tractable probabilistic model for the relation between the complex wavelet coefficients of two images of the same scene. The two images are acquisitioned at distinct moments of times, or from distinct viewpoints, or by distinct sensors. By means of the introduced probabilistic model, we argue that the similarity between the two images is controlled not by the values of the wavelet coefficients, which can be altered by many factors, but by the nature of the wavelet coefficients, that we model with the help of hidden state variables. We integrate this probabilistic framework in the construction of a new image registration algorithm. This algorithm has sub-pixel accuracy and is robust to noise and to other variations like local illumination changes. We present the performance of our algorithm on various image types.
Keywords: Complex wavelet transform, image registration, modeling using hidden state variables, probabilistic similaritymeasure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13821621 An Amalgam Approach for DICOM Image Classification and Recognition
Authors: J. Umamaheswari, G. Radhamani
Abstract:
This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.
Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22591620 Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules
Authors: Chien-Hua Wang, Wei-Hsuan Lee, Chin-Tzong Pang
Abstract:
In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to derive from fuzzy association rules. At first, we apply fuzzy partition methods and decide a membership function of quantitative value for each transaction item. Next, we implement FFP-growth to deal with the process of data mining. In addition, in order to understand the impact of Apriori algorithm and FFP-growth algorithm on the execution time and the number of generated association rules, the experiment will be performed by using different sizes of databases and thresholds. Lastly, the experiment results show FFPgrowth algorithm is more efficient than other existing methods.Keywords: Data mining, association rule, fuzzy frequent patterngrowth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18001619 Application of LSB Based Steganographic Technique for 8-bit Color Images
Authors: Mamta Juneja, Parvinder S. Sandhu, Ekta Walia
Abstract:
Steganography is the process of hiding one file inside another such that others can neither identify the meaning of the embedded object, nor even recognize its existence. Current trends favor using digital image files as the cover file to hide another digital file that contains the secret message or information. One of the most common methods of implementation is Least Significant Bit Insertion, in which the least significant bit of every byte is altered to form the bit-string representing the embedded file. Altering the LSB will only cause minor changes in color, and thus is usually not noticeable to the human eye. While this technique works well for 24-bit color image files, steganography has not been as successful when using an 8-bit color image file, due to limitations in color variations and the use of a colormap. This paper presents the results of research investigating the combination of image compression and steganography. The technique developed starts with a 24-bit color bitmap file, then compresses the file by organizing and optimizing an 8-bit colormap. After the process of compression, a text message is hidden in the final, compressed image. Results indicate that the final technique has potential of being useful in the steganographic world.
Keywords: Compression, Colormap, Encryption, Steganographyand LSB Insertion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30011618 Virtual 3D Environments for Image-Based Navigation Algorithms
Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka
Abstract:
This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.Keywords: Simulation, visual navigation, mobile robot, data visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10491617 Applications of Genetic Programming in Data Mining
Authors: Saleh Mesbah Elkaffas, Ahmed A. Toony
Abstract:
This paper details the application of a genetic programming framework for induction of useful classification rules from a database of income statements, balance sheets, and cash flow statements for North American public companies. Potentially interesting classification rules are discovered. Anomalies in the discovery process merit further investigation of the application of genetic programming to the dataset for the problem domain.Keywords: Genetic programming, data mining classification rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15451616 Review of the Software Used for 3D Volumetric Reconstruction of the Liver
Authors: P. Strakos, M. Jaros, T. Karasek, T. Kozubek, P. Vavra, T. Jonszta
Abstract:
In medical imaging, segmentation of different areas of human body like bones, organs, tissues, etc. is an important issue. Image segmentation allows isolating the object of interest for further processing that can lead for example to 3D model reconstruction of whole organs. Difficulty of this procedure varies from trivial for bones to quite difficult for organs like liver. The liver is being considered as one of the most difficult human body organ to segment. It is mainly for its complexity, shape versatility and proximity of other organs and tissues. Due to this facts usually substantial user effort has to be applied to obtain satisfactory results of the image segmentation. Process of image segmentation then deteriorates from automatic or semi-automatic to fairly manual one. In this paper, overview of selected available software applications that can handle semi-automatic image segmentation with further 3D volume reconstruction of human liver is presented. The applications are being evaluated based on the segmentation results of several consecutive DICOM images covering the abdominal area of the human body.
Keywords: Image segmentation, semi-automatic, software, 3D volumetric reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44691615 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina M. R. Caridade, Ana Rita F. Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with health care facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool, developed in MATLAB using Graphical User Interface, for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing to view original images and fusion images, compare processed and original images, adjust parameters and save images. The tool proposed in an innovative teaching and learning environment, consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques, necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides a real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.
Keywords: Image fusion, image processing, teaching-learning simulation tool, biomedical engineering education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141614 Image Segmentation by Mathematical Morphology: An Approach through Linear, Bilinear and Conformal Transformation
Authors: Dibyendu Ghoshal, Pinaki Pratim Acharjya
Abstract:
Image segmentation process based on mathematical morphology has been studied in the paper. It has been established from the first principles of the morphological process, the entire segmentation is although a nonlinear signal processing task, the constituent wise, the intermediate steps are linear, bilinear and conformal transformation and they give rise to a non linear affect in a cumulative manner.
Keywords: Image segmentation, linear transform, bilinear transform, conformal transform, mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21921613 An Analysis of Compression Methods and Implementation of Medical Images in Wireless Network
Authors: C. Rajan, K. Geetha, S. Geetha
Abstract:
The motivation of image compression technique is to reduce the irrelevance and redundancy of the image data in order to store or pass data in an efficient way from one place to another place. There are several types of compression methods available. Without the help of compression technique, the file size is knowingly larger, usually several megabytes, but by doing the compression technique, it is possible to reduce file size up to 10% as of the original without noticeable loss in quality. Image compression can be lossless or lossy. The compression technique can be applied to images, audio, video and text data. This research work mainly concentrates on methods of encoding, DCT, compression methods, security, etc. Different methodologies and network simulations have been analyzed here. Various methods of compression methodologies and its performance metrics has been investigated and presented in a table manner.Keywords: Image compression techniques, encoding, DCT, lossy compression, lossless compression, JPEG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11881612 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.
Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10941611 Content-based Retrieval of Medical Images
Authors: Lilac A. E. Al-Safadi
Abstract:
With the advance of multimedia and diagnostic images technologies, the number of radiographic images is increasing constantly. The medical field demands sophisticated systems for search and retrieval of the produced multimedia document. This paper presents an ongoing research that focuses on the semantic content of radiographic image documents to facilitate semantic-based radiographic image indexing and a retrieval system. The proposed model would divide a radiographic image document, based on its semantic content, and would be converted into a logical structure or a semantic structure. The logical structure represents the overall organization of information. The semantic structure, which is bound to logical structure, is composed of semantic objects with interrelationships in the various spaces in the radiographic image.Keywords: Semantic Indexing, Content-Based Retrieval, Radiographic Images, Data Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14931610 A Semi-Fragile Watermarking Scheme for Color Image Authentication
Authors: M. Hamad Hassan, S.A.M. Gilani
Abstract:
In this paper, a semi-fragile watermarking scheme is proposed for color image authentication. In this particular scheme, the color image is first transformed from RGB to YST color space, suitable for watermarking the color media. Each channel is divided into 4×4 non-overlapping blocks and its each 2×2 sub-block is selected. The embedding space is created by setting the two LSBs of selected sub-block to zero, which will hold the authentication and recovery information. For verification of work authentication and parity bits denoted by 'a' & 'p' are computed for each 2×2 subblock. For recovery, intensity mean of each 2×2 sub-block is computed and encoded upto six to eight bits depending upon the channel selection. The size of sub-block is important for correct localization and fast computation. For watermark distribution 2DTorus Automorphism is implemented using a private key to have a secure mapping of blocks. The perceptibility of watermarked image is quite reasonable both subjectively and objectively. Our scheme is oblivious, correctly localizes the tampering and able to recovery the original work with probability of near one.
Keywords: Image Authentication, YST Color Space, Intensity Mean, LSBs, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18331609 Quad Tree Decomposition Based Analysis of Compressed Image Data Communication for Lossy and Lossless Using WSN
Authors: N. Muthukumaran, R. Ravi
Abstract:
The Quad Tree Decomposition based performance analysis of compressed image data communication for lossy and lossless through wireless sensor network is presented. Images have considerably higher storage requirement than text. While transmitting a multimedia content there is chance of the packets being dropped due to noise and interference. At the receiver end the packets that carry valuable information might be damaged or lost due to noise, interference and congestion. In order to avoid the valuable information from being dropped various retransmission schemes have been proposed. In this proposed scheme QTD is used. QTD is an image segmentation method that divides the image into homogeneous areas. In this proposed scheme involves analysis of parameters such as compression ratio, peak signal to noise ratio, mean square error, bits per pixel in compressed image and analysis of difficulties during data packet communication in Wireless Sensor Networks. By considering the above, this paper is to use the QTD to improve the compression ratio as well as visual quality and the algorithm in MATLAB 7.1 and NS2 Simulator software tool.
Keywords: Image compression, Compression Ratio, Quad tree decomposition, Wireless sensor networks, NS2 simulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23911608 Real-Time Image Analysis of Capsule Endoscopy for Bleeding Discrimination in Embedded System Platform
Authors: Yong-Gyu Lee, Gilwon Yoon
Abstract:
Image processing for capsule endoscopy requires large memory and it takes hours for diagnosis since operation time is normally more than 8 hours. A real-time analysis algorithm of capsule images can be clinically very useful. It can differentiate abnormal tissue from health structure and provide with correlation information among the images. Bleeding is our interest in this regard and we propose a method of detecting frames with potential bleeding in real-time. Our detection algorithm is based on statistical analysis and the shapes of bleeding spots. We tested our algorithm with 30 cases of capsule endoscopy in the digestive track. Results were excellent where a sensitivity of 99% and a specificity of 97% were achieved in detecting the image frames with bleeding spots.Keywords: bleeding, capsule endoscopy, image processing, real time analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18751607 Feature's Extraction of Human Body Composition in Images by Segmentation Method
Authors: Mousa Mojarrad, Mashallah Abbasi Dezfouli, Amir Masoud Rahmani
Abstract:
Detection and recognition of the Human Body Composition and extraction their measures (width and length of human body) in images are a major issue in detecting objects and the important field in Image, Signal and Vision Computing in recent years. Finding people and extraction their features in Images are particularly important problem of object recognition, because people can have high variability in the appearance. This variability may be due to the configuration of a person (e.g., standing vs. sitting vs. jogging), the pose (e.g. frontal vs. lateral view), clothing, and variations in illumination. In this study, first, Human Body is being recognized in image then the measures of Human Body extract from the image.
Keywords: Analysis of image processing, canny edge detection, classification, feature extraction, human body recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27711606 Low-MAC FEC Controller for JPEG2000 Image Transmission Over IEEE 802.15.4
Authors: Kyu-Yeul Wang, Sang-Seol Lee, Jea-Yeon Song, Jea-Young Choi, Seong-Seob Shin, Dong-Sun Kim, Duck-Jin Chung
Abstract:
In this paper, we propose the low-MAC FEC controller for practical implementation of JPEG2000 image transmission using IEEE 802.15.4. The proposed low-MAC FEC controller has very small HW size and spends little computation to estimate channel state. Because of this advantage, it is acceptable to apply IEEE 802.15.4 which has to operate more than 1 year with battery. For the image transmission, we integrate the low-MAC FEC controller and RCPC coder in sensor node of LR-WPAN. The modified sensor node has increase of 3% hardware size than conventional zigbee sensor node.
Keywords: FEC, IEEE 802.15.4, JPEG2000, low-MAC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19431605 An Image Processing Based Approach for Assessing Wheelchair Cushions
Authors: B. Farahani, R. Fadil, A. Aboonabi, B. Hoffmann, J. Loscheider, K. Tavakolian, S. Arzanpour
Abstract:
Wheelchair users spend long hours in a sitting position, and selecting the right cushion is highly critical in preventing pressure ulcers in that demographic. Pressure Mapping Systems (PMS) are typically used in clinical settings by therapists to identify the sitting profile and pressure points in the sitting area to select the cushion that fits the best for the users. A PMS is a flexible mat composed of arrays of distributed networks of pressure sensors. The output of the PMS systems is a color-coded image that shows the intensity of the pressure concentration. Therapists use the PMS images to compare different cushions fit for each user. This process is highly subjective and requires good visual memory for the best outcome. This paper aims to develop an image processing technique to analyze the images of PMS and provide an objective measure to assess the cushions based on their pressure distribution mappings. In this paper, we first reviewed the skeletal anatomy of the human sitting area and its relation to the PMS image. This knowledge is then used to identify the important features that must be considered in image processing. We then developed an algorithm based on those features to analyze the images and rank them according to their fit to the user's needs.
Keywords: cushion, image processing, pressure mapping system, wheelchair
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6961604 Novelty as a Measure of Interestingness in Knowledge Discovery
Authors: Vasudha Bhatnagar, Ahmed Sultan Al-Hegami, Naveen Kumar
Abstract:
Rule Discovery is an important technique for mining knowledge from large databases. Use of objective measures for discovering interesting rules leads to another data mining problem, although of reduced complexity. Data mining researchers have studied subjective measures of interestingness to reduce the volume of discovered rules to ultimately improve the overall efficiency of KDD process. In this paper we study novelty of the discovered rules as a subjective measure of interestingness. We propose a hybrid approach based on both objective and subjective measures to quantify novelty of the discovered rules in terms of their deviations from the known rules (knowledge). We analyze the types of deviation that can arise between two rules and categorize the discovered rules according to the user specified threshold. We implement the proposed framework and experiment with some public datasets. The experimental results are promising.Keywords: Knowledge Discovery in Databases (KDD), Interestingness, Subjective Measures, Novelty Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18071603 Composite Relevance Feedback for Image Retrieval
Authors: Pushpa B. Patil, Manesh B. Kokare
Abstract:
This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.
Keywords: Image retrieval, relevance feedback, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931602 Optimizing Exposure Parameters in Digital Mammography: A Study in Morocco
Authors: Talbi Mohammed, Oustous Aziz, Ben Messaoud Mounir, Sebihi Rajaa, Khalis Mohammed
Abstract:
Background: Breast cancer is the leading cause of death for women around the world. Screening mammography is the reference examination, due to its sensitivity for detecting small lesions and micro-calcifications. Therefore, it is essential to ensure quality mammographic examinations with the most optimal dose. These conditions depend on the choice of exposure parameters. Clinically, practices must be evaluated in order to determine the most appropriate exposure parameters. Material and Methods: We performed our measurements on a mobile mammography unit (PLANMED Sofie-classic.) in Morocco. A solid dosimeter (AGMS Radcal) and a MTM 100 phantom allow to quantify the delivered dose and the image quality. For image quality assessment, scores are defined by the rate of visible inserts (MTM 100 phantom), obtained and compared for each acquisition. Results: The results show that the parameters of the mammography unit on which we have made our measurements can be improved in order to offer a better compromise between image quality and breast dose. The last one can be reduced up from 13.27% to 22.16%, while preserving comparable image quality.
Keywords: Mammography, image quality, breast dose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7851601 A Way of Converting Color Images to Gray Scale Ones for the Color Blinds -Reducing the Colors for Tokyo Subway Map-
Authors: Katsuhiro Narikiyo, Naoto Kobayakawa
Abstract:
We proposes a way of removing noises and reducing the number of colors contained in a JPEG image. Main purpose of this project is to convert color images to monochrome images for the color blinds. We treat the crispy color images like the Tokyo subway map. Each color in the image has an important information. But for the color blinds, similar colors cannot be distinguished. If we can convert those colors to different gray values, they can distinguish them.
Keywords: Image processing, Color blind, JPEG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001600 Particle Image Velocimetry for Measuring Water Flow Velocity
Authors: King Kuok Kuok, Po Chan Chiu
Abstract:
Floods are natural phenomena, which may turn into disasters causing widespread damage, health problems and even deaths. Nowadays, floods had become more serious and more frequent due to climatic changes. During flooding, discharge measurement still can be taken by standing on the bridge across the river using portable measurement instrument. However, it is too dangerous to get near to the river especially during high flood. Therefore, this study employs Particle Image Velocimetry (PIV) as a tool to measure the surface flow velocity. PIV is a image processing technique to track the movement of water from one point to another. The PIV codes are developed using Matlab. In this study, 18 ping pong balls were scattered over the surface of the drain and images were taken with a digital SLR camera. The images obtained were analyzed using the PIV code. Results show that PIV is able to produce the flow velocity through analyzing the series of images captured.
Keywords: Particle Image Velocimetry, flow velocity, surface flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28451599 Adaptive Skin Segmentation Using Color Distance Map
Authors: Mohammad Shoyaib, M. Abdullah-Al-Wadud, Oksam Chae
Abstract:
In this paper an effective approach for segmenting human skin regions in images taken at different environment is proposed. The proposed method uses a color distance map that is flexible enough to reliably detect the skin regions even if the illumination conditions of the image vary. Local image conditions is also focused, which help the technique to adaptively detect differently illuminated skin regions of an image. Moreover, usage of local information also helps the skin detection process to get rid of picking up much noisy pixels.Keywords: Color Distance map, Reference skin color, Regiongrowing, Skin segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006