Search results for: Experience based learning
12344 The Cooperative Learning Management in the Course of Principles of Mathematics for Graduate Level
Authors: Komon Paisal
Abstract:
The aim of this research was to create collaborative learning activities in the course of Principles of Mathematics for graduate level by investigating the students’ ability in proving the mathematics principles as well as their attitudes towards the activities. The samples composed of 2 main group; lecturers and students. The lecturers consisted of 3 teachers who taught the course of Principles of Mathematics at Rajabhat Suan Sunandha Unicersity in the academic year 2012. The students consisted of 32 students joining the cooperative learning activities in the subject of Principles of Mathematics in the academic year 2012. The research tools included activity plan for cooperative learning, testing on mathematics with the reliability of 0.8067 and the attitude questionnaires reported by the students. The results showed that: 1) the efficiency of the developed cooperative learning activities was 69.76/ 68.57 which was lower than the set criteria at 70/70. 2) The students joining the cooperative learning activities were able to prove the principles of mathematics at the average of 70%. 3) The students joining the cooperative learning activities reported moderate attitude towards the activities.
Keywords: Instructional Design, Pedagogical, Teaching/ Learning Strategies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168712343 Machine Learning in Production Systems Design Using Genetic Algorithms
Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli
Abstract:
To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162912342 The Impact of Video Games in Children-s Learning of Mathematics
Authors: Muhammad Ridhuan Tony Lim Abdullah, Zulqarnain Abu Bakar, Razol Mahari Ali, Ibrahima Faye, Hilmi Hasan
Abstract:
This paper describes a research project on Year 3 primary school students in Malaysia in their use of computer-based video game to enhance learning of multiplication facts (tables) in the Mathematics subject. This study attempts to investigate whether video games could actually contribute to positive effect on children-s learning or otherwise. In conducting this study, the researchers assume a neutral stand in the investigation as an unbiased outcome of the study would render reliable response to the impact of video games in education which would contribute to the literature of technology-based education as well as impact to the pedagogical aspect of formal education. In order to conduct the study, a subject (Mathematics) with a specific topic area in the subject (multiplication facts) is chosen. The study adopts a causal-comparative research to investigate the impact of the inclusion of a computer-based video game designed to teach multiplication facts to primary level students. Sample size is 100 students divided into two i.e., A: conventional group and B conventional group aided by video games. The conventional group (A) would be taught multiplication facts (timetables) and skills conventionally. The other group (B) underwent the same lessons but with supplementary activity: a computer-based video game on multiplication which is called Timez-Attack. Analysis of marks accrued from pre-test will be compared to post- test using comparisons of means, t tests, and ANOVA tests to investigate the impact of computer games as an added learning activity. The findings revealed that video games as a supplementary activity to classroom learning brings significant and positive effect on students- retention and mastery of multiplication tables as compared to students who rely only upon formal classroom instructions.
Keywords: Technology for education, Gaming for education, Computer-based video games, Cognitive learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426012341 Human Capital and Capability Approach in European Lifelong Learning Development: A Case Study of Macedonia in the Balkan
Authors: E. Heikkilä
Abstract:
The paper discusses European Lifelong Learning policy in the European enlargement to the Balkan. The European Lifelong Learning policy with Human Capital approach is researched in the country case of Macedonia. The paper argues that Human Capital approach focusing on instrumental and economic importance of learning for employability and economic growth needs to be complemented with Capability Approach for intrinsic and noneconomic needs of learning among the ethnic minorities. The paper identifies two dimensions of importance – minority languages and civic education – that the Capability Approach may develop to guarantee equal opportunities to all to benefit from European educational and lifelong learning development and to build an inclusive and socially just democracy in Macedonia.
Keywords: Capability approach, European lifelong learning, human capital theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180312340 Management of Multimedia Contents for Distributed e-Learning System
Authors: Kazunari Meguro, Daisuke Yamamoto, Shinichi Motomura, Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara
Abstract:
We have developed a distributed asynchronous Web based training system. In order to improve the scalability and robustness of this system, all contents and functions are realized on mobile agents. These agents are distributed to computers, and they can use a Peer to Peer network that modified Content-Addressable Network. In the proposed system, only text data can be included in a exercise. To make our proposed system more useful, the mechanism that it not only adapts to multimedia data but also it doesn-t influence the user-s learning even if the size of exercise becomes large is necessary.Keywords: e-Learning, multimedia, Mobile Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148912339 Resources-Based Ontology Matching to Access Learning Resources
Authors: A. Elbyed
Abstract:
Nowadays, ontologies are used for achieving a common understanding within a user community and for sharing domain knowledge. However, the de-centralized nature of the web makes indeed inevitable that small communities will use their own ontologies to describe their data and to index their own resources. Certainly, accessing to resources from various ontologies created independently is an important challenge for answering end user queries. Ontology mapping is thus required for combining ontologies. However, mapping complete ontologies at run time is a computationally expensive task. This paper proposes a system in which mappings between concepts may be generated dynamically as the concepts are encountered during user queries. In this way, the interaction itself defines the context in which small and relevant portions of ontologies are mapped. We illustrate application of the proposed system in the context of Technology Enhanced Learning (TEL) where learners need to access to learning resources covering specific concepts.Keywords: Resources query, ontologies, ontology mapping, similarity measures, semantic web, e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148712338 Active Learning Strategies and Academic Achievement among Some Psychology Undergraduates in Barbados
Authors: Grace Adebisi Fayombo
Abstract:
This study investigated the relationships between the active learning strategies (discussion, video clips, game show, role– play, five minute paper, clarification pauses, and small group) and academic achievement among a sample of 158 undergraduate psychology students in The University of the West Indies (UWI), Barbados. Results revealed statistically significant positive correlations between active learning strategies and students’ academic achievement; so also the active learning strategies contributed 22% (Rsq=0.222) to the variance being accounted for in academic achievement and this was found to be statistically significant (F(7,150) = 6.12, p < .05). Additionally, group work emerged as the best active learning strategy and had the highest correlation with the students’ academic achievement. These results were discussed in the light of the importance of the active learning strategies promoting academic achievement among the university students.
Keywords: Academic achievement, active learning strategies, psychology, undergraduates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 377712337 Digital Paradoxes in Learning Theories
Authors: Marcello Bettoni
Abstract:
As a learning theory tries to borrow from science a framework to found its method, it shows paradoxes and paralysing contraddictions. This results, on one hand, from adopting a learning/teaching model as it were a mere “transfer of data" (mechanical learning approach), and on the other hand from borrowing the complexity theory (an indeterministic and non-linear model), that risks to vanish every educational effort. This work is aimed at describing existing criticism, unveiling the antinomic nature of such paradoxes, focussing on a view where neither the mechanical learning perspective nor the chaotic and nonlinear model can threaten and jeopardize the educational work. Author intends to go back over the steps that led to these paradoxes and to unveil their antinomic nature. Actually this could serve the purpose to explain some current misunderstandings about the real usefulness of Ict within the youth-s learning process and growth.
Keywords: Antinomy, complexity, Leibniz, paradox
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127812336 Virtual Learning Environments in Spanish Traditional Universities
Authors: Leire Urcola, Amaia Altuzarra
Abstract:
This communication is intended to provide some issues for thought on the importance of implementation of Blended Learning in traditional universities, particularly in the Spanish university system. In this respect, we believe that virtual environments are likely to meet some of the needs raised by the Bologna agreement, trying to maintain the quality of teaching and at the same time taking advantage of the functionalities that virtual learning platforms offer. We are aware that an approach of learning from an open and constructivist nature in universities is a complex process that faces significant technological, administrative and human barriers. Therefore, in order to put plans in our universities, it is necessary to analyze the state of the art of some indicators relating to the use of ICT, with special attention to virtual teaching and learning, so that we can identify the main obstacles and design adaptive strategies for their full integration in the education system. Finally, we present major initiatives launched in the European and state framework for the effective implementation of new virtual environments in the area of higher education.
Keywords: Blended learning, e-Learning, ICT, Virtual LearningEnvironments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143812335 Individual Learning and Collaborative Knowledge Building with Shared Digital Artifacts
Authors: Joachim Kimmerle, Johannes Moskaliuk, Ulrike Cress
Abstract:
The development of Internet technology in recent years has led to a more active role of users in creating Web content. This has significant effects both on individual learning and collaborative knowledge building. This paper will present an integrative framework model to describe and explain learning and knowledge building with shared digital artifacts on the basis of Luhmann-s systems theory and Piaget-s model of equilibration. In this model, knowledge progress is based on cognitive conflicts resulting from incongruities between an individual-s prior knowledge and the information which is contained in a digital artifact. Empirical support for the model will be provided by 1) applying it descriptively to texts from Wikipedia, 2) examining knowledge-building processes using a social network analysis, and 3) presenting a survey of a series of experimental laboratory studies.
Keywords: Individual learning, collaborative knowledge building, systems theory, equilibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163012334 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning
Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan
Abstract:
We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.Keywords: Daily activity recognition, healthcare, IoT sensors, transfer learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89212333 Organisational Learning as Perceived and Expected by Management and Non Management Staff
Authors: Narat Susilaworn, Nuttawuth Muenjohn
Abstract:
The study applied a combination of organisational learning models (Senge, 1994: Pedler, Burgoyne and Boydell, 1991) and later adopted fifteen organisational learning principles with one of the biggest energy providers in South East Asia. The purposes of the current study were to: a) investigate the company-s practices on fifteen organisational learning principles; b) explore the perceptions and expectations of its employees in relations to the principles; and c) compare the perceptions and expectations between management and non-management staff toward the fifteen factors. One hundred and ten employees responded on a designed questionnaire and the results indicated that the company was practicing activities that associated with organisational learning principles. Also, according to the T-test results, significant differences between management and non-management respondents were found. Research implications are also provided.
Keywords: Organisational learning, employee perception, organisational performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124712332 Information Dissemination System (IDS) Based E-Learning in Agricultural of Iran (Perception of Iranian Extension Agents)
Authors: A. R. Ommani, M. Chizari
Abstract:
The purpose of the study reported here was designing Information Dissemination System (IDS) based E-learning in agricultural of Iran. A questionnaire was developed to designing Information Dissemination System. The questionnaire was distributed to 96 extension agents who work for Management of Extension and Farming System of Khuzestan province of Iran. Data collected were analyzed using the Statistical Package for the Social Sciences (SPSS). Appropriate statistical procedures for description (frequencies, percent, means, and standard deviations) were used. In this study there was a significant relationship between the age , IT skill and knowledge, years of extension work, the extend of information seeking motivation, level of job satisfaction and level of education with use of information technology by extension agent. According to extension agents five factors were ranked respectively as five top essential items to designing Information Dissemination System (IDS) based E-learning in agricultural of Iran. These factors include: 1) Establish communication between farmers, coordinators (extension agents), agricultural experts, research centers, and community by information technology. 2) The communication between all should be mutual. 3) The information must be based farmers need. 4) Internet used as a facility to transfer the advanced agricultural information to the farming community. 5) Farmers can be illiterate and speak a local and they are not expected to use the system directly. Knowledge produced by the agricultural scientist must be transformed in to computer understandable presentation. To designing Information Dissemination System, electronic communication, in the agricultural society and rural areas must be developed. This communication must be mutual between all factors.
Keywords: E-learning, information dissemination system, information technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238912331 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction
Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova
Abstract:
A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.
Keywords: Analogy-making, categorization, learning of categories, abstraction, hierarchical structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78012330 Real-time Network Anomaly Detection Systems Based on Machine-Learning Algorithms
Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez
Abstract:
This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.
Keywords: Cyber-security, Intrusion Detection Systems, Temporal Graph Network, Anomaly Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50512329 Model to Support Synchronous and Asynchronous in the Learning Process with An Adaptive Hypermedia System
Authors: Francisca Grimón, Marylin Giugni, Josep Monguet F., Joaquín Fernández, Luis León G.
Abstract:
In blended learning environments, the Internet can be combined with other technologies. The aim of this research was to design, introduce and validate a model to support synchronous and asynchronous activities by managing content domains in an Adaptive Hypermedia System (AHS). The application is based on information recovery techniques, clustering algorithms and adaptation rules to adjust the user's model to contents and objects of study. This system was applied to blended learning in higher education. The research strategy used was the case study method. Empirical studies were carried out on courses at two universities to validate the model. The results of this research show that the model had a positive effect on the learning process. The students indicated that the synchronous and asynchronous scenario is a good option, as it involves a combination of work with the lecturer and the AHS. In addition, they gave positive ratings to the system and stated that the contents were adapted to each user profile.
Keywords: Blended Learning, System Adaptive, Model, Clustering Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185212328 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment
Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang
Abstract:
2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.
Keywords: Artificial Intelligence, machine learning, deep learning, convolutional neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125712327 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
Authors: Rahib Hidayat Abiyev
Abstract:
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 237512326 The Effects of the Impact of Instructional Immediacy on Cognition and Learning in Online Classes
Authors: Glenda A. Gunter
Abstract:
Current research has explored the impact of instructional immediacy, defined as those behaviors that help build close relationships or feelings of closeness, both on cognition and motivation in the traditional classroom and online classroom; however, online courses continue to suffer from higher dropout rates. Based on Albert Bandura-s Social Cognitive Theory, four primary relationships or interactions in an online course will be explored in light of how they can provide immediacy thereby reducing student attrition and improving cognitive learning. The four relationships are teacher-student, student-student, and student-content, and studentcomputer. Results of a study conducted with inservice teachers completing a 14-week online professional development technology course will be examined to demonstrate immediacy strategies that improve cognitive learning and reduce student attrition. Results of the study reveal that students can be motivated through various interactions and instructional immediacy behaviors which lead to higher completion rates, improved self-efficacy, and cognitive learning.Keywords: Distance Learning, Self-Efficacy, Instructional immediacy, Student achievement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280612325 Towards the Creation of Adaptive Content from Web Resources in an E-Learning Platform to Learners Profiles
Authors: M. Chaoui, M-T. Laskri
Abstract:
The evolution of information and communication technology has made a very powerful support for the improvement of online learning platforms in creation of courses. This paper presents a study that attempts to explore new web architecture for creating an adaptive online learning system to profiles of learners, using the Web as a source for the automatic creation of courses for the online training platform. This architecture will reduce the time and decrease the effort performed by the drafters of the current e-learning platform, and direct adaptation of the Web content will greatly enrich the quality of online training courses.Keywords: Web Content, e-Learning, Educational Content, LMS, Profiles of Learners
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152312324 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms
Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma
Abstract:
In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168612323 The Fundamental Reliance of Iterative Learning Control on Stability Robustness
Authors: Richard W. Longman
Abstract:
Iterative learning control aims to achieve zero tracking error of a specific command. This is accomplished by iteratively adjusting the command given to a feedback control system, based on the tracking error observed in the previous iteration. One would like the iterations to converge to zero tracking error in spite of any error present in the model used to design the learning law. First, this need for stability robustness is discussed, and then the need for robustness of the property that the transients are well behaved. Methods of producing the needed robustness to parameter variations and to singular perturbations are presented. Then a method involving reverse time runs is given that lets the world behavior produce the ILC gains in such a way as to eliminate the need for a mathematical model. Since the real world is producing the gains, there is no issue of model error. Provided the world behaves linearly, the approach gives an ILC law with both stability robustness and good transient robustness, without the need to generate a model.Keywords: Iterative learning control, stability robustness, monotonic convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159412322 Awakeness, Awareness and Learning Mathematics for Arab Students: A Pilot Study
Authors: S. Rawashdi, D. Bshouty
Abstract:
This paper aimed at discussing how to urge middle and high school Arab students in Israel to be aware of the importance of and investing in learning mathematics. In the first phase of the study, three questionnaires were passed to two nine-grade classes, one on Awareness, one on Awakeness and one on Learning. One of the two classes was an outstanding class from a public school (PUBS) of 31 students, and the other a heterogeneous class from a private school (PRIS) with 31 students. The Learning questionnaire which was administrated to the Awareness and Awareness topics was passed to PRIS and the Awareness and Awareness Questionnaires were passed to the PUBS class After two months we passed the post-questionnaire to both classes to validate the long-term impact of the study. The findings of the study show that awakeness and awareness processes have an effect on the math learning process, on its context in students' daily lives and their growing interest in learning math.
Keywords: Awakeness, awareness, learning mathematics, pupils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63612321 Cost and Productivity Experiences of Pakistan with Aggregate Learning Curve
Authors: Jamshaid ur Rehman, Shahida Wizarat
Abstract:
The principal focus of this study is on the measurement and analysis of labor learnings in Pakistan. The study at the aggregate economy level focus on the labor productivity movements and at large-scale manufacturing level focus on the cost structure, with isolating the contribution of the learning curve. The analysis of S-shaped curve suggests that learnings are only below one half of aggregate learning curve and other half shows the retardation in learning, hence retardation in productivity movements. The study implies the existence of learning economies in term of cost reduction that is input cost per unit produced decreases by 0.51 percent every time the cumulative production output doubles.Keywords: Cost, Inflection Point, Learning Curve, Minima, Maxima, and Productivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178712320 Mobile Learning Adoption in Saudi Arabia
Authors: Mohamed E. Seliaman, M. S. Al-Turki
Abstract:
This paper investigates the use of mobile phones and tablets for learning purposes among university students in Saudi Arabia. For this purpose, an extended Technology Acceptance Model (TAM) is proposed to analyze the adoption of mobile devices and smart phones by Saudi university students for accessing course materials, searching the web for information related to their discipline, sharing knowledge, conducting assignments etc.Keywords: Saudi Arabia, TAM, Mobile learning, e-learning, smart phones.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 368912319 A Hybrid Metaheuristic Framework for Evolving the PROAFTN Classifier
Authors: Feras Al-Obeidat, Nabil Belacel, Juan A. Carretero, Prabhat Mahanti,
Abstract:
In this paper, a new learning algorithm based on a hybrid metaheuristic integrating Differential Evolution (DE) and Reduced Variable Neighborhood Search (RVNS) is introduced to train the classification method PROAFTN. To apply PROAFTN, values of several parameters need to be determined prior to classification. These parameters include boundaries of intervals and relative weights for each attribute. Based on these requirements, the hybrid approach, named DEPRO-RVNS, is presented in this study. In some cases, the major problem when applying DE to some classification problems was the premature convergence of some individuals to local optima. To eliminate this shortcoming and to improve the exploration and exploitation capabilities of DE, such individuals were set to iteratively re-explored using RVNS. Based on the generated results on both training and testing data, it is shown that the performance of PROAFTN is significantly improved. Furthermore, the experimental study shows that DEPRO-RVNS outperforms well-known machine learning classifiers in a variety of problems.Keywords: Knowledge Discovery, Differential Evolution, Reduced Variable Neighborhood Search, Multiple criteria classification, PROAFTN, Supervised Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147712318 Foot Recognition Using Deep Learning for Knee Rehabilitation
Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia
Abstract:
The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143512317 Use of Technology to Improve Students’ Attitude in Learning Mathematics of Non-Mathematics Undergraduate Students
Authors: Asia Majeed
Abstract:
This paper will investigate a form of learning mathematics by integrating technology in mathematics specifically for the university first-year calculus class to support students’ engagement in learning which influences students' conceptual and procedural understanding of the calculus content in a better way. The students with good grades in high school calculus generally struggle in first-year university calculus classes in learning mathematical analysis concepts. This problem has to be addressed. If this problem is not resolved, then most likely students with less ability to do mathematics might not able to complete their degrees. In this work, MATLAB is used to help students in learning and in improving calculus concepts.
Keywords: Calculus, first-year university students, teaching strategies, MATLAB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39712316 Learning FCM by Tabu Search
Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mostafa Jafari, Salman Hooshmand
Abstract:
Fuzzy Cognitive Maps (FCMs) is a causal graph, which shows the relations between essential components in complex systems. Experts who are familiar with the system components and their relations can generate a related FCM. There is a big gap when human experts cannot produce FCM or even there is no expert to produce the related FCM. Therefore, a new mechanism must be used to bridge this gap. In this paper, a novel learning method is proposed to construct causal graph based on historical data and by using metaheuristic such Tabu Search (TS). The efficiency of the proposed method is shown via comparison of its results of some numerical examples with those of some other methods.
Keywords: Fuzzy Cognitive Map (FCM), Learning, Meta heuristic, Genetic Algorithm, Tabu search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186412315 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: Audit, machine learning, assessment, metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025