Search results for: Environmental Modeling
3024 A Structural Equation Model of Risk Perception of Rockfall for Revisit Intention
Authors: Ya-Fen Lee, Yun-Yao Chi
Abstract:
The study aims to explore the relationship between risk perception of rockfall and revisit intention using a Structural Equation Modeling (SEM) analysis. A total of 573 valid questionnaires are collected from travelers to Taroko National Park, Taiwan. The findings show the majority of travelers have the medium perception of rockfall risk, and are willing to revisit the Taroko National Park. The revisit intention to Taroko National Park is influenced by hazardous preferences, willingness-to-pay, obstruction and attraction. The risk perception has an indirect effect on revisit intention through influencing willingness-to-pay. The study results can be a reference for mitigation the rockfall disaster.
Keywords: Risk perception, rockfall, revisit intention, structural equation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21533023 Modeling and Design of MPPT Controller Using Stepped P&O Algorithm in Solar Photovoltaic System
Authors: R. Prakash, B. Meenakshipriya, R. Kumaravelan
Abstract:
This paper presents modeling and simulation of Grid Connected Photovoltaic (PV) system by using improved mathematical model. The model is used to study different parameter variations and effects on the PV array including operating temperature and solar irradiation level. In this paper stepped P&O algorithm is proposed for MPPT control. This algorithm will identify the suitable duty ratio in which the DC-DC converter should be operated to maximize the power output. Photo voltaic array with proposed stepped P&O-MPPT controller can operate in the maximum power point for the whole range of solar data (irradiance and temperature).
Keywords: Photovoltaic (PV), Maximum Power Point Tracking (MPPT), Boost converter, Stepped Perturb & Observe method (Stepped P&O).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40113022 From Type-I to Type-II Fuzzy System Modeling for Diagnosis of Hepatitis
Authors: Shahabeddin Sotudian, M. H. Fazel Zarandi, I. B. Turksen
Abstract:
Hepatitis is one of the most common and dangerous diseases that affects humankind, and exposes millions of people to serious health risks every year. Diagnosis of Hepatitis has always been a challenge for physicians. This paper presents an effective method for diagnosis of hepatitis based on interval Type-II fuzzy. This proposed system includes three steps: pre-processing (feature selection), Type-I and Type-II fuzzy classification, and system evaluation. KNN-FD feature selection is used as the preprocessing step in order to exclude irrelevant features and to improve classification performance and efficiency in generating the classification model. In the fuzzy classification step, an “indirect approach” is used for fuzzy system modeling by implementing the exponential compactness and separation index for determining the number of rules in the fuzzy clustering approach. Therefore, we first proposed a Type-I fuzzy system that had an accuracy of approximately 90.9%. In the proposed system, the process of diagnosis faces vagueness and uncertainty in the final decision. Thus, the imprecise knowledge was managed by using interval Type-II fuzzy logic. The results that were obtained show that interval Type-II fuzzy has the ability to diagnose hepatitis with an average accuracy of 93.94%. The classification accuracy obtained is the highest one reached thus far. The aforementioned rate of accuracy demonstrates that the Type-II fuzzy system has a better performance in comparison to Type-I and indicates a higher capability of Type-II fuzzy system for modeling uncertainty.
Keywords: Hepatitis disease, medical diagnosis, type-I fuzzy logic, type-II fuzzy logic, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16473021 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: Data Mining, Environmental Modeling, Sustainability, Urban Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17823020 Dynamic Modeling of Wind Farms in the Jeju Power System
Authors: Dae-Hee Son, Sang-Hee Kang, Soon-Ryul Nam
Abstract:
In this paper, we develop a dynamic modeling of wind farms in the Jeju power system. The dynamic model of wind farms is developed to study their dynamic effects on the Jeju power system. PSS/E is used to develop the dynamic model of a wind farm composed of 1.5-MW doubly fed induction generators. The output of a wind farm is regulated based on pitch angle control, in which the two controllable parameters are speed and power references. The simulation results confirm that the pitch angle is successfully controlled, regardless of the variation in wind speed and output regulation.
Keywords: Dynamic model, Jeju power system, pitch angle control, PSS/E, wind farm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17693019 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials
Authors: S. Bennoud, M. Zergoug
Abstract:
The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models.
The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces.
The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations.
In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.
Keywords: Eddy current, Finite element method, Non destructive testing, Numerical simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31413018 Hidden State Probabilistic Modeling for Complex Wavelet Based Image Registration
Authors: F. C. Calnegru
Abstract:
This article presents a computationally tractable probabilistic model for the relation between the complex wavelet coefficients of two images of the same scene. The two images are acquisitioned at distinct moments of times, or from distinct viewpoints, or by distinct sensors. By means of the introduced probabilistic model, we argue that the similarity between the two images is controlled not by the values of the wavelet coefficients, which can be altered by many factors, but by the nature of the wavelet coefficients, that we model with the help of hidden state variables. We integrate this probabilistic framework in the construction of a new image registration algorithm. This algorithm has sub-pixel accuracy and is robust to noise and to other variations like local illumination changes. We present the performance of our algorithm on various image types.
Keywords: Complex wavelet transform, image registration, modeling using hidden state variables, probabilistic similaritymeasure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13823017 An Integrated Planning Framework for Sustainable Tourism: Case Study of Tunisia
Authors: S. Halioui, I. Arikan, M. Schmidt
Abstract:
Tourism sector in Tunisia faces several problems that range from economic challenges to environmental degradation and social instability. These problems have been intensified because of the increased competition in the tourism market, the political instability, financial crises, and recently terrorism problems have aggravated the situation. As a consequence, a new framework that promotes sustainable tourism in the country and increases its competitiveness is urgently needed. Planning for sustainable tourism sector requires the integration of complex interactions between economic, social and environmental aspects. Sustainable tourism principles can be implemented with the help of Strategic Environmental Assessment (SEA) process, which ensures the full integration of economic, social and environmental considerations while planning for the tourism sector in Tunisia. Results of the paper have broad implications for policy makers and tourism professionals.Keywords: Sustainable tourism, strategic environmental assessment, tourism planning, policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15043016 From Risk/Security Analysis via Timespace to a Model of Human Vulnerability and Human Security
Authors: Anders Troedsson
Abstract:
For us humans, risk and insecurity are intimately linked to vulnerabilities - where there is vulnerability, there is potentially risk and insecurity. Reducing vulnerability through compensatory measures means decreasing the likelihood of a certain external event be qualified as a risk/threat/assault, and thus also means increasing the individual’s sense of security. The paper suggests that a meaningful way to approach the study of risk/ insecurity is to organize thinking about the vulnerabilities that external phenomena evoke in humans as perceived by them. Such phenomena are, through a set of given vulnerabilities, potentially translated into perceptions of "insecurity." An ontological discussion about salient timespace characteristics of external phenomena as perceived by humans, including such which potentially can be qualified as risk/threat/assault, leads to the positing of two dimensions which are central for describing what in the paper is called the essence of risk/threat/assault. As is argued, such modeling helps analysis steer free of the subjective factor which is intimately connected to human perception and which mediates between phenomena “out there” potentially identified as risk/threat/assault, and their translation into an experience of security or insecurity. A proposed set of universally given vulnerabilities are scrutinized with the help of the two dimensions, resulting in a modeling effort featuring four realms of vulnerabilities which together represent a dynamic whole. This model in turn informs modeling on human security.
Keywords: Human vulnerabilities, human security, inert-immediate, material-immaterial, timespace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10493015 Modeling and Identification of Hammerstein System by using Triangular Basis Functions
Authors: K. Elleuch, A. Chaari
Abstract:
This paper deals with modeling and parameter identification of nonlinear systems described by Hammerstein model having Piecewise nonlinear characteristics such as Dead-zone nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the triangular basis functions leads to a particular form of Hammerstein model. The approximation by using Triangular basis functions for the description of the static nonlinear block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD) technique has been applied to separate the coupled parameters. The proposed approach has been efficiently tested on academic examples of simulation.Keywords: Identification, Hammerstein model, Piecewisenonlinear characteristic, Dead-zone nonlinearity, Triangular basisfunctions, Singular Values Decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19203014 Kinetic Study of Gluconic Acid Batch Fermentation by Aspergillus niger
Authors: Akbarningrum Fatmawati, Rudy Agustriyanto, Lindawati
Abstract:
Gluconic acid is one of interesting chemical products in industries such as detergents, leather, photographic, textile, and especially in food and pharmaceutical industries. Fermentation is an advantageous process to produce gluconic acid. Mathematical modeling is important in the design and operation of fermentation process. In fact, kinetic data must be available for modeling. The kinetic parameters of gluconic acid production by Aspergillus niger in batch culture was studied in this research at initial substrate concentration of 150, 200 and 250 g/l. The kinetic models used were logistic equation for growth, Luedeking-Piret equation for gluconic acid formation, and Luedeking-Piret-like equation for glucose consumption. The Kinetic parameters in the model were obtained by minimizing non linear least squares curve fitting.Keywords: Aspergillus niger, fermentation, gluconic acid, kinetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26933013 Vibration Analysis of the Gas Turbine Considering Dependency of Stiffness and Damping on Frequency
Authors: Hamed Jamshidi, Pooya Djamshidi
Abstract:
In this paper the complete rotor system including elastic shaft with distributed mass, allowing for the effects of oil film in bearings. Also, flexibility of foundation is modeled. As a whole this article is a relatively complete research in modeling and vibration analysis of rotor considering gyroscopic effect, damping, dependency of stiffness and damping coefficients on frequency and solving the vibration equations including these parameters. On the basis of finite element method and utilizing four element types including element of shaft, disk, bearing and foundation and using MATLAB, a computer program is written. So the responses in several cases and considering different effects are obtained. Then the results are compared with each other, with exact solutions and results of other papers.Keywords: Damping coefficients , Finite element method, Modeling , Rotor vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24903012 FEA Modeling of Material Removal Rate in Electrical Discharge Machining of Al6063/SiC Composites
Authors: U. K. Vishwakarma , A. Dvivedi, P. Kumar
Abstract:
Metal matrix composites (MMC) are generating extensive interest in diverse fields like defense, aerospace, electronics and automotive industries. In this present investigation, material removal rate (MRR) modeling has been carried out using an axisymmetric model of Al-SiC composite during electrical discharge machining (EDM). A FEA model of single spark EDM was developed to calculate the temperature distribution.Further, single spark model was extended to simulate the second discharge. For multi-discharge machining material removal was calculated by calculating the number of pulses. Validation of model has been done by comparing the experimental results obtained under the same process parameters with the analytical results. A good agreement was found between the experimental results and the theoretical value.Keywords: Electrical Discharge Machining, FEA, Metal matrix composites, Multi-discharge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37323011 Modeling the Vapor Pressure of Biodiesel Fuels
Authors: O. Castellanos Díaz, F. Schoeggl, H. W. Yarranton, M. A. Satyro, T. M. Lovestead, T. J. Bruno
Abstract:
The composition, vapour pressure, and heat capacity of nine biodiesel fuels from different sources were measured. The vapour pressure of the biodiesel fuels is modeled assuming an ideal liquid phase of the fatty acid methyl esters constituting the fuel. New methodologies to calculate the vapour pressure and ideal gas and liquid heat capacities of the biodiesel fuel constituents are proposed. Two alternative optimization scenarios are evaluated: 1) vapour pressure only; 2) vapour pressure constrained with liquid heat capacity. Without physical constraints, significant errors in liquid heat capacity predictions were found whereas the constrained correlation accurately fit both vapour pressure and liquid heat capacity.Keywords: Biodiesel fuels, Fatty acid methyl ester, Heat capacity, Modeling, Vapour pressure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60103010 A Method for Modeling Multiple Antenna Channels
Authors: S. Rajabi, M. ArdebiliPoor, M. Shahabadi
Abstract:
In this paper we propose a method for modeling the correlation between the received signals by two or more antennas operating in a multipath environment. Considering the maximum excess delay in the channel being modeled, an elliptical region surrounding both transmitter and receiver antennas is produced. A number of scatterers are randomly distributed in this region and scatter the incoming waves. The amplitude and phase of incoming waves are computed and used to obtain statistical properties of the received signals. This model has the distinguishable advantage of being applicable for any configuration of antennas. Furthermore the common PDF (Probability Distribution Function) of received wave amplitudes for any pair of antennas can be calculated and used to produce statistical parameters of received signals.Keywords: MIMO (Multiple Input Multiple Output), SIMO (Single Input Multiple Output), GBSBEM (Geometrically Based Single Bounce Elliptical Model).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14223009 Modern State of the Universal Modeling for Centrifugal Compressors
Authors: Y. Galerkin, K. Soldatova, A. Drozdov
Abstract:
The 6th version of Universal modeling method for centrifugal compressor stage calculation is described. Identification of the new mathematical model was made. As a result of identification the uniform set of empirical coefficients is received. The efficiency definition error is 0,86 % at a design point. The efficiency definition error at five flow rate points (except a point of the maximum flow rate) is 1,22 %. Several variants of the stage with 3D impellers designed by 6th version program and quasi threedimensional calculation programs were compared by their gas dynamic performances CFD (NUMECA FINE TURBO). Performance comparison demonstrated general principles of design validity and leads to some design recommendations.
Keywords: Compressor design, loss model, performance prediction, test data, model stages, flow rate coefficient, work coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18793008 Interaction between Environmental Performance and Logistic System: A Case Study of International Company
Authors: T. Tambovceva, A. Tambovcevs
Abstract:
The activities which are mostly related to the environmental performance need to be pointed, especially how logistics systems influence on environmental performance. This paper analyses how company could lead the initiative in this area by incorporating environmental management principles into their daily activities. The analysis is based on literature review about logistics and environment, the information from company R website as well as face-to-face interviews. A case study is given to show how they can turn practices into green while simultaneously meet the efficiency objectives. The research results show that the adoption of EMS and ISO 14001 certification is an effective tool for the logistics management. Such practices simultaneously reduce the negative contribute to better company performance. The results also show that the emissions to air and water, and energy consumption are the main logistics impacts to the environment.
Keywords: environmental management system, green logistics, information technology, information systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17663007 Mathematical Modeling of Asphaltene Precipitation: A Review
Authors: Josefina Barnachea Janier, Radzuan B. Razali, Afza Shafie, Brahim Belhaouari Samir
Abstract:
In the Enhanced Oil Recovery (EOR) method, use of Carbon dioxide flooding whereby CO2 is injected into an oil reservoir to increase output when extracting oil resulted significant recovery worldwide. The carbon dioxide function as a pressurizing agent when mixed into the underground crude oil will reduce its viscosity and will enable a rapid oil flow. Despite the CO2’s advantage in the oil recovery, it may result to asphaltene precipitation a problem that will cause the reduction of oil produced from oil wells. In severe cases, asphaltene precipitation can cause costly blockages in oil pipes and machinery. This paper presents reviews of several studies done on mathematical modeling of asphaltene precipitation. The synthesized result from several researches done on this topic can be used as guide in order to better understand asphaltene precipitation. Likewise, this can be used as initial reference for students, and new researchers doing study on asphaltene precipitation.
Keywords: Asphaltene precipitation, crude oil, carbon dioxide flooding, enhanced oil recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39963006 A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua
Authors: Shervin Khazaeli, Shahab Haj-zamani
Abstract:
Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities.Keywords: Contact problems, discrete element method, extended-finite element method, soil-structure interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12363005 CFD Modeling of High Temperature Seal Chamber
Authors: Mikhail P. Strongin, Ragupathi Soundararajan
Abstract:
The purpose of this work is fast design optimization of the seal chamber. The study includes the mass transfer between lower and upper chamber on seal chamber for hot water application pumps. The use of Fluent 12.1 commercial code made it possible to capture complex flow with heat-mass transfer, radiation, Tailor instability, and buoyancy effect. Realizable k-epsilon model was used for turbulence modeling. Radiation heat losses were taken into account. The temperature distribution at seal region is predicted with respect to heat addition. Results show the possibilities of the model simplifications by excluding the water domain in low chamber from calculations. CFD simulations permit to improve seal chamber design to meet target water temperature around the seal. This study can be used for the analysis of different seal chamber configurations.Keywords: CFD, heat transfer, seal chamber, high temperature water
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16753004 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction
Authors: Kyoungjin Kim
Abstract:
Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.
Keywords: Nanoparticles, Thermite reaction, Combustion wave, Numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24473003 ANN Modeling for Cadmium Biosorption from Potable Water Using a Packed-Bed Column Process
Authors: Dariush Jafari, Seyed Ali Jafari
Abstract:
The recommended limit for cadmium concentration in potable water is less than 0.005 mg/L. A continuous biosorption process using indigenous red seaweed, Gracilaria corticata, was performed to remove cadmium from the potable water. The process was conducted under fixed conditions and the breakthrough curves were achieved for three consecutive sorption-desorption cycles. A modeling based on Artificial Neural Network (ANN) was employed to fit the experimental breakthrough data. In addition, a simplified semi empirical model, Thomas, was employed for this purpose. It was found that ANN well described the experimental data (R2>0.99) while the Thomas prediction were a bit less successful with R2>0.97. The adjusted design parameters using the nonlinear form of Thomas model was in a good agreement with the experimentally obtained ones. The results approve the capability of ANN to predict the cadmium concentration in potable water.
Keywords: ANN, biosorption, cadmium, packed-bed, potable water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21293002 A Theoretical Framework for Rural Tourism Motivation Factors
Authors: N. P. Tsephe, S. D. Eyono Obono
Abstract:
Rural tourism has many economical, environmental, and socio-cultural benefits. However, the development of rural tourism compared to urban tourism is also faced with several challenges added to the disadvantages of rural tourism. The aim of this study is to design a model of the factors affecting the motivations of rural tourists, in an attempt to improve the understanding of rural tourism motivation for the development of that form of tourism. The proposed model is based on a sound theoretical framework. It was designed following a literature review of tourism motivation theoretical frameworks and of rural tourism motivation factors. The tourism motivation theoretical framework that fitted to the best all rural tourism motivation factors was then chosen as the basis for the proposed model. This study hence found that the push and pull tourism motivation framework and the inner and outer directed values theory are the most adequate theoretical frameworks for the modeling of rural tourism motivation.
Keywords: Motivation factors, rural tourism, tourism motivation theories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94203001 The Role of Food System in Promoting Environmental Planning
Authors: Rayeheh Khatami, Toktam Hanaei, Mohammad Reza Mansouri Daneshvar
Abstract:
Today, many local and national governments are developing urban agriculture as an effective tool in responding to challenges such as food security, poverty and environmental problems. In fact, urban agriculture plays an important role in food system, which can provide citizens' income and become one of the components of economic, social and environmental systems. The purpose of this paper is to analyze the urban agriculture and urban food systems in order to understand the impact of urban foods production on environmental planning in non-western city region context. To achieve such objective, we carry out a case study in Mashhad city of Iran by using qualitative approaches. A survey on documentary studies and planning tools integrate with face to face interview with experts which explain the role of food system in environmental planning process. The paper extends the use of food in the environmental planning, specifically to examine this role to create agricultural garden as a mean to improve agricultural system in non-western country. The paper is concluded with a set of recommendations for researchers and policymakers who seek to create spaces in order to implement urban agriculture in cities for food justice.
Keywords: Urban agriculture, food system, environmental planning, agricultural garden, Mashhad.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11713000 Supersonic Flow around a Dihedral Airfoil: Modeling and Experimentation Investigation
Authors: A. Naamane, M. Hasnaoui
Abstract:
Numerical modeling of fluid flows, whether compressible or incompressible, laminar or turbulent presents a considerable contribution in the scientific and industrial fields. However, the development of an approximate model of a supersonic flow requires the introduction of specific and more precise techniques and methods. For this purpose, the object of this paper is modeling a supersonic flow of inviscid fluid around a dihedral airfoil. Based on the thin airfoils theory and the non-dimensional stationary Steichen equation of a two-dimensional supersonic flow in isentropic evolution, we obtained a solution for the downstream velocity potential of the oblique shock at the second order of relative thickness that characterizes a perturbation parameter. This result has been dealt with by the asymptotic analysis and characteristics method. In order to validate our model, the results are discussed in comparison with theoretical and experimental results. Indeed, firstly, the comparison of the results of our model has shown that they are quantitatively acceptable compared to the existing theoretical results. Finally, an experimental study was conducted using the AF300 supersonic wind tunnel. In this experiment, we have considered the incident upstream Mach number over a symmetrical dihedral airfoil wing. The comparison of the different Mach number downstream results of our model with those of the existing theoretical data (relative margin between 0.07% and 4%) and with experimental results (concordance for a deflection angle between 1° and 11°) support the validation of our model with accuracy.
Keywords: Asymptotic modelling, dihedral airfoil, supersonic flow, supersonic wind tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7152999 Aerodynamic Designing of Supersonic Centrifugal Compressor Stages
Authors: Y. Galerkin, A. Rekstin, K. Soldatova
Abstract:
Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrates ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φ des deserves additional study.
Keywords: Centrifugal compressor stage, supersonic impeller, inlet flow angle, loss coefficient, return channel, shock wave, vane diffuser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32072998 Environmental Analysis of the Zinc Oxide Nanophotocatalyst Synthesis
Authors: Natália B. Pompermayer, Mariana B. Porto, Elizabeth F. Souza
Abstract:
Nanophotocatalysts such as titanium (TiO2), zinc (ZnO), and iron (Fe2O3) oxides can be used in organic pollutants oxidation, and in many other applications. But among the challenges for technological application (scale-up) of the nanotechnology scientific developments two aspects are still little explored: research on environmental risk of the nanomaterials preparation methods, and the study of nanomaterials properties and/or performance variability. The environmental analysis was performed for six different methods of ZnO nanoparticles synthesis, and showed that it is possible to identify the more environmentally compatible process even at laboratory scale research. The obtained ZnO nanoparticles were tested as photocatalysts, and increased the degradation rate of the Rhodamine B dye up to 30 times.
Keywords: Environmental impact analysis, inorganic nanoparticles, photocatalysts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34582997 A New Approach to Polynomial Neural Networks based on Genetic Algorithm
Authors: S. Farzi
Abstract:
Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, we introduce GPNN (genetic polynomial neural network) to improve the performance of PNN. GPNN determines the number of input variables and the order of all neurons with GA (genetic algorithm). We use GA to search between all possible values for the number of input variables and the order of polynomial. GPNN performance is obtained by two nonlinear systems. the quadratic equation and the time series Dow Jones stock index are two case studies for obtaining the GPNN performance.Keywords: GMDH, GPNN, GA, PNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20942996 CO-OFDM DSP Channel Estimation
Authors: Pranav Ravikumar, Arunabha Bera, Vijay K. Mehra, Anand Kumar
Abstract:
This paper solves the Non Linear Schrodinger Equation using the Split Step Fourier method for modeling an optical fiber. The model generates a complex wave of optical pulses and using the results obtained two graphs namely Loss versus Wavelength and Dispersion versus Wavelength are generated. Taking Chromatic Dispersion and Polarization Mode Dispersion losses into account, the graphs generated are compared with the graphs formulated by JDS Uniphase Corporation which uses standard values of dispersion for optical fibers. The graphs generated when compared with the JDS Uniphase Corporation plots were found to be more or less similar thus verifying that the model proposed is right. MATLAB software was used for doing the modeling.Keywords: Modulation, Non Linear Schrodinger Equation, Optical fiber, Split Step Fourier Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27872995 Modeling and Simulation of Position Estimation of Switched Reluctance Motor with Artificial Neural Networks
Authors: Oguz Ustun, Erdal Bekiroglu
Abstract:
In the present study, position estimation of switched reluctance motor (SRM) has been achieved on the basis of the artificial neural networks (ANNs). The ANNs can estimate the rotor position without using an extra rotor position sensor by measuring the phase flux linkages and phase currents. Flux linkage-phase current-rotor position data set and supervised backpropagation learning algorithm are used in training of the ANN based position estimator. A 4-phase SRM have been used to verify the accuracy and feasibility of the proposed position estimator. Simulation results show that the proposed position estimator gives precise and accurate position estimations for both under the low and high level reference speeds of the SRM
Keywords: Artificial neural networks, modeling andsimulation, position observer, switched reluctance motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062