Search results for: Elevated temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2621

Search results for: Elevated temperature

2171 Determination of Recrystallization Temperature of Varying Degrees Formed Aluminium, by DMTA Technique

Authors: Zsolt Dugár, Péter Barkóczy, Gábor Béres, Dávid Kis, Attila Bata, Tamás Dugár, Zoltán Weltsch

Abstract:

This study is about the structural transformations of aluminium examining with the Dynamic Mechanical Thermal Analyzer (DMTA). It is a faster and simpler measuring method to make consequence about the metal’s structural transformations. The device measures the changing of the mechanical characteristics depending on the heating rate, and concludes certain transformations. This measuring method fast and shows clean-cut results comparing the conventional ways. Applying polymer measuring devices for metal investigations is not widespread method. One of the adaptable ways is shown in this study. The article compares the results of the small specimen test and the DMTA method, considering the temperature and the forming dependence of recrystallization temperature.

Keywords: DMTA, recrystallization, cold forming, rotation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
2170 Sous Vide Packaging Technology Application for Salad with Meat in Mayonnaise Shelf Life Extension

Authors: Vita Levkane, Sandra Muizniece-Brasava, Lija Dukalska

Abstract:

Experiments have been carried out at the Latvia University of Agriculture Department of Food Technology. The aim of this work was to assess the effect of sous vide packaging during the storage time of salad with meat in mayonnaise at different storage temperature. Samples were evaluated at 0, 1, 3, 7, 10, 15, 18, 25, 29, 42, and 52 storage days at the storage temperature of +4±0.5 ºC and +10±0.5 ºC. Experimentally the quality of the salad with meat in mayonnaise was characterized by measuring colour, pH and microbiological properties. The sous vide packaging was effective in protecting the product from physical, chemical, and microbial quality degradation. The sous vide packaging significantly reduces microbial growth at storage temperature of +4±0.5 ºC and +10±0.5 ºC. Moreover, it is possible to extend the product shelf life to 52 days even when stored at +10±0.5 ºC.

Keywords: salad with meat in mayonnaise, shelf life, sous videpackaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
2169 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: Composite, long fiber reinforced thermoplastics, mechanical properties, dynamic mechanical analysis, time temperature superposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
2168 Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM

Authors: N. Yogal, C. Lehrmann

Abstract:

The use of permanent magnets (PM) is increasing in permanent magnet synchronous machines (PMSM) to fulfill the requirements of high efficiency machines in modern industry. PMSM are widely used in industrial applications, wind power plants and the automotive industry. Since PMSM are used in different environmental conditions, the long-term effect of NdFeB-based magnets at high temperatures and their corrosion behavior have to be studied due to the irreversible loss of magnetic properties. In this paper, the effect of magnetic properties due to corrosion and increasing temperature in a climatic chamber has been presented. The magnetic moment and magnetic field of the magnets were studied experimentally.

Keywords: Permanent magnets (PM), NdFeB, corrosion behavior, temperature effect, permanent magnet synchronous machine (PMSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2565
2167 Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels

Authors: O. Altuntaş, A. Güral

Abstract:

The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm3 was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 °C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness.

Keywords: Powder metallurgy steel, heat treatment, bainite, spherical cementite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
2166 Investigation of Temperature-Dependent Electrical Properties of Tc-CuPc: PCBM Bulk Heterojunction (BHJ) under Dark Conditions

Authors: Shahid M. Khan, Muhammad H. Sayyad

Abstract:

An organic bulk heterojunction (BHJ) was fabricated using a blended film containing Copper (II) tetrakis(4-acumylphenoxy) phthalocyanine (Tc-CuPc) along with [6,6]-Phenyl C61 butyric acid methyl ester (PCBM). Weight ratio between Tc-CuPc and PCBM was 1:1. The electrical properties of Tc-CuPc: PCBM BHJ were examined. Rectifying nature of the BHJ was displayed by current-voltage (I-V) curves, recorded in dark and at various temperatures. At low voltages, conduction was ohmic succeeded by space-charge limiting current (SCLC) conduction at higher voltages in which exponential trap distribution was dominant. Series resistance, shunt resistance, ideality factor, effective barrier height and mobility at room temperature were found to be 526 4, 482 k4, 3.7, 0.17 eV and 2×10-7 cm2V-1s-1 respectively. Temperature effect towards different BHJ parameters was observed under dark condition.

Keywords: Bulk heterojunction, PCBM, phthalocyanine, spin coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
2165 Effect of the Tidal Charge Parameter on Temperature Anisotropies of the Cosmic Microwave Background Radiation

Authors: Evariste Norbert Boj, Jan Schee

Abstract:

We present the calculations of the temperature anisotropy of the cosmic microwave background radiation (CMBR) caused by an inhomogeneous region (the clump) within the Friedmann-Lemaitre-Robertson-Walker (FLRW) model of the Universe build in the framework of the Randall-Sundrum one brane model. We present two spherically symmetrical and statical models of the clump, the braneworld Reissner-Nordstrom black hole (bRNBH) and the perfect fluid sphere of uniform density matched to the FLRW spacetime via an external bRNBH. The boundary of the vacuum region expands, which induces an additional frequency shift to a photon of the CMBR passing through this inhomogeneity in comparison to the case of a photon propagating through a pure FLRW spacetime. This frequency shift is associated with an effective change of temperature of the CMBR in the corresponding direction. We give estimates on the changes of the effective temperature of the CMBR’s photon with the change of parameters describing the brane and the induced tidal forces from the bulk.

Keywords: Braneworld, CMBR, Randall-Sundrum model, Rees-Sciama effect, Reissner-Nordstrom black hole.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 375
2164 Role of Oxide Scale Thickness Measurements in Boiler Conditions Assessment

Authors: M. Alardhi, A. Almazrouee, S. Alsaleh

Abstract:

Oxide scale thickness measurements are used in assessing the life of different components operating at high temperature environment. Such measurements provide an approximation for the temperature inside components such as reheater and superheater tubes. A number of failures were encountered in one of the boilers in one of Kuwaiti power plants. These failure were mainly in the first row of the primary super heater tubes, therefore, the specialized engineer decide to replace them during the annual shutdown. As a tool for failure analysis, oxide scale thickness measurement were used to investigate the temperature distribution in these tubes. In this paper, the oxide scale thickness of these tubes were measured and used for analysis. The measurements provide an illustration of the distribution of heat transfer of the primary superheater tubes in the boiler system. Remarks and analysis about the design of the boiler are also provided.

Keywords: Super heater tubes, oxide scale measurements, overheating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3737
2163 Estimation of Natural Convection Heat Transfer from Plate-Fin Heat Sinks in a Closed Enclosure

Authors: Han-Taw Chen, Chung-Hou Lai, Tzu-Hsiang Lin, Ge-Jang He

Abstract:

This study applies the inverse method and three- dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a closed rectangular enclosure for various values of fin height. The inverse method with the finite difference method and the experimental temperature data is applied to determine the heat transfer coefficient. The k-ε turbulence model is used to obtain the heat transfer and fluid flow characteristics within the fins. To validate the accuracy of the results obtained, the comparison of the average heat transfer coefficient is made. The calculated temperature at selected measurement locations on the plate-fin is also compared with experimental data.

Keywords: Inverse method, FLUENT, k-ε model, Heat transfer characteristics, Plate-fin heat sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3844
2162 Food Package Design to Preserve Food Temperature

Authors: Sugiono, W. Ardiatna, H. Firdaus, N. Kusnandar, B. Utomo, J. A. Kadar

Abstract:

It is desirable that most human food is warm when eaten, including when food is obtained by taking it away from the point of sale in disposable food packaging. However, such packaging does not retain heat for a long time, which is necessary to ensure the food remains warm when eaten. The study looked for single-use food packaging that could retain the heat of the food for a long time. The methodology for obtaining such packaging is either by modifying available packages on the market or by making new ones with materials that are easily obtained locally, then testing by loading the local food and measuring its temperature and the length of time until it reaches the lowest acceptable temperature for hot food (56°C). Packages made of plastic boxes lined with thin aluminum foil on the inside are the best way to keep food warm for up to 44 minutes from the time it is put in the package to the time the required temperature is reached. Moreover, packaging made of local common food paper, where the food was put in a transparent plastic bag inside the package, was found to be the simplest package that could retain heat for 82.31% as long as the best packaging could, in this study. Plastic boxes with thin aluminum foil inside were the best single-use food packaging in this study that served to keep hot food warm and fit for consumption.

Keywords: Aluminum foil, hot food, local food, packaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
2161 Assessment of Compaction Temperatures on Hot Mix Asphalt (HMA) Properties

Authors: Houman Saedi

Abstract:

Hot Mix Asphalt (HMA) is one of the most commonest constructed asphalts in Iran and the quality control of constructed roads with HMA have been always paid due attention by researchers. The quality control of constructed roads with this method is being usually carried out by measuring volumetric parameters of HMA marshall samples. One of the important parameters that has a critical role in changing these volumetric parameters is “compaction temperature"; which as a result of its changing, volumetric parameters of Marshall Samples and subsequently constructed asphalt is encountered with variations. In this study, considering the necessity of preservation of the compaction temperature, the effect of various temperatures on Hot Mix Asphalt (HMA) samples properties has been evaluated. As well, to evaluate the effect of this parameter on different grading, two different grading (Top coat index grading and binder index grading) have been used and samples were compacted at 5 various temperatures.

Keywords: Compaction Temperature, HMA, Volumetric Parameters, Marshall Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948
2160 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy

Authors: Woei-Shyan Lee, Hao-Chien Kao

Abstract:

The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.

Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
2159 Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods

Authors: Ahmed Amine Hachicha, Chaouki Ghenai, Abdul Kadir Hamid

Abstract:

Temperature effect on the performance of a photovoltaic module is one of the main concerns that face this renewable energy, especially in hot arid region, e.g. United Arab Emirates. Overheating of the PV modules reduces the open circuit voltage and the efficiency of the modules dramatically. In this work, water-cooling is developed to enhance the performance of PV modules. Different scenarios are tested under UAE weather conditions: front, back and double cooling. A spraying system is used for the front cooling whether a direct contact water system is used for the back cooling. The experimental results are compared to non-cooling module and the performance of the PV module is determined for different situations. The experimental results show that the front cooling is more effective than the back cooling and may decrease the temperature of the PV module significantly. 

Keywords: PV cooling, solar energy, cooling methods, electrical efficiency, temperature effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3567
2158 Land Surface Temperature and Biophysical Factors in Urban Planning

Authors: Illyani Ibrahim, Azizan Abu Samah, Rosmadi Fauzi

Abstract:

Land surface temperature (LST) is an important parameter to study in urban climate. The understanding of the influence of biophysical factors could improve the establishment of modeling urban thermal landscape. It is well established that climate hold a great influence on the urban landscape. However, it has been recognize that climate has a low priority in urban planning process, due to the complex nature of its influence. This study will focus on the relatively cloud free Landsat Thematic Mapper image of the study area, acquired on the 2nd March 2006. Correlation analyses were conducted to identify the relationship of LST to the biophysical factors; vegetation indices, impervious surface, and albedo to investigate the variation of LST. We suggest that the results can be considered by the stackholders during decision-making process to create a cooler and comfortable environment in the urban landscape for city dwellers.

Keywords: Biophysical factors, land surface temperature, urban planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
2157 Semisolid Structure and Parameters for A360 Aluminum Alloy Prepared by Mechanical Stirring

Authors: MM.Kaykha, A. Kamarei, M. Safari, V. Arbabi

Abstract:

Semisolid metal processing uses solid–liquid slurries containing fine and globular solid particles uniformly distributed in a liquid matrix, which can be handled as a solid and flow like a liquid. In the recent years, many methods have been introduced for the production of semisolid slurries since it is scientifically sound and industrially viable with such preferred microstructures called thixotropic microstructures as feedstock materials. One such process that needs very low equipment investment and running costs is the cooling slope. In this research by using a mechanical stirrer slurry maker constructed by the authors, the effects of mechanical stirring parameters such as: stirring time, stirring temperature and stirring Speed on micro-structure and mechanical properties of A360 aluminum alloy in semi-solid forming, are investigated. It is determined that mold temperature and holding time of part in temperature of 580ºC have a great effect on micro-structure and mechanical properties(stirring temperature of 585ºC, stirring time of 20 minutes and stirring speed of 425 RPM). By optimizing the forming parameters, dendrite microstructure changes to globular and mechanical properties improves. This is because of breaking and globularzing dendrites of primary α-AL.

Keywords: Semi-Solid Forming, Mechanical properties, Shear Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
2156 Influence of Taguchi Selected Parameters on Properties of CuO-ZrO2 Nanoparticles Produced via Sol-gel Method

Authors: H. Abdizadeh, Y. Vahidshad

Abstract:

The present paper discusses the selection of process parameters for obtaining optimal nanocrystallites size in the CuOZrO2 catalyst. There are some parameters changing the inorganic structure which have an influence on the role of hydrolysis and condensation reaction. A statistical design test method is implemented in order to optimize the experimental conditions of CuO-ZrO2 nanoparticles preparation. This method is applied for the experiments and L16 orthogonal array standard. The crystallites size is considered as an index. This index will be used for the analysis in the condition where the parameters vary. The effect of pH, H2O/ precursor molar ratio (R), time and temperature of calcination, chelating agent and alcohol volume are particularity investigated among all other parameters. In accordance with the results of Taguchi, it is found that temperature has the greatest impact on the particle size. The pH and H2O/ precursor molar ratio have low influences as compared with temperature. The alcohol volume as well as the time has almost no effect as compared with all other parameters. Temperature also has an influence on the morphology and amorphous structure of zirconia. The optimal conditions are determined by using Taguchi method. The nanocatalyst is studied by DTA-TG, XRD, EDS, SEM and TEM. The results of this research indicate that it is possible to vary the structure, morphology and properties of the sol-gel by controlling the above-mentioned parameters.

Keywords: CuO-ZrO2 Nanoparticles, Sol-gel, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
2155 Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications

Authors: Sam Rasoulzadeh, Atefeh Mousavi

Abstract:

Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.

Keywords: Heat transfer, solar reactor, fluidized bed reactor, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
2154 Effect of Variable viscosity on Convective Heat Transfer along an Inclined Plate Embedded in Porous Medium with an Applied Magnetic Field

Authors: N.S. Tomer, Phool Singh, Manoj Kumar

Abstract:

The flow and heat transfer characteristics for natural convection along an inclined plate in a saturated porous medium with an applied magnetic field have been studied. The fluid viscosity has been assumed to be an inverse function of temperature. Assuming temperature vary as a power function of distance. The transformed ordinary differential equations have solved by numerical integration using Runge-Kutta method. The velocity and temperature profile components on the plate are computed and discussed in detail for various values of the variable viscosity parameter, inclination angle, magnetic field parameter, and real constant (λ). The results have also been interpreted with the aid of tables and graphs. The numerical values of Nusselt number have been calculated for the mentioned parameters.

Keywords: Heat Transfer, Magnetic Field, Porosity, Viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
2153 Heavy Deformation and High-Temperature Annealing Microstructure and Texture Studies of TaHfNbZrTi Equiatomic Refractory High Entropy Alloy

Authors: Veeresham Mokali

Abstract:

The refractory alloys are crucial for high-temperature applications to improve performance and reduce cost. They are used in several applications such as aerospace, outer space, military and defense, nuclear powerplants, automobiles, and industry. The conventional refractory alloys show greater stability at high temperatures and in contrast they have operational limitations due to their low melting temperatures. However, there is a huge requirement to improve the refractory alloys’ operational temperatures and replace the conventional alloys. The newly emerging refractory high entropy alloys (RHEAs) could be alternative materials for conventional refractory alloys and fulfill the demands and requirements of various practical applications in the future. The RHEA TaHfNbZrTi was prepared through an arc melting process. The annealing behavior of severely deformed equiatomic RHEATaHfNbZrTi has been investigated. To obtain deformed condition, the alloy is cold-rolled to 90% thickness reduction and then subjected to an annealing process to observe recrystallization and microstructural evolution in the range of 800 °C to 1400 °C temperatures. The cold-rolled – 90% condition shows the presence of microstructural heterogeneity. The annealing microstructure of 800 °C temperature reveals that partial recrystallization and further annealing treatment carried out annealing treatment in the range of 850 °C to 1400 °C temperatures exhibits completely recrystallized microstructures, followed by coarsening with a degree of annealing temperature. The deformed and annealed conditions featured the development of body-centered cubic (BCC) fiber textures. The experimental investigation of heavy deformation and followed by high-temperature annealing up to 1400 °C temperature will contribute to the understanding of microstructure and texture evolution of emerging RHEAs.

Keywords: Refractory high entropy alloys, cold-rolling, annealing, microstructure, texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
2152 Viscosity of Vegetable Oils and Biodiesel and Energy Generation

Authors: Thiago de O. Macedo, Roberto G. Pereira, Juan M. Pardal, Alexandre S. Soares, Valdir deJ. Lameira

Abstract:

The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.

Keywords: Biofuel, energy generation, vegetable oil, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9613
2151 Mechanical Properties and Released Gas Analysis of High Strength Concrete with Polypropylene and Raw Rice Husk under High Temperature Effect

Authors: B. Akturk, N. Yuzer, N. Kabay

Abstract:

When concrete is exposed to high temperatures, some changes may occur in its physical and mechanical properties. Especially, high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a well-known method. In high temperatures, PP decomposes and releases harmful gases such as CO and CO2. This study researches the use of raw rice husk (RRH) as a sustainable material, instead of PP fibers considering its several favorable properties, and its usability in HSC. RRH and PP fibers were incorporated in concrete at 0.5-3% and 0.2-0.5% by weight of cement, respectively. Concrete specimens were exposed to 20 (control), 300, 600 and 900°C. Under these temperatures, residual compressive and splitting tensile strength was determined. During the high temperature effect, the amount of released harmful gases was measured by a gas detector.

Keywords: Gas analysis, high temperature, high strength concrete, polypropylene fibers, raw rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
2150 Optimization of the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)

Authors: Behrouz Mosayebi Dehkordi

Abstract:

Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.

Keywords: Dehydration, Mushroom, Optimization, Osmotic, Response Surface Methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
2149 Optimization the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)

Authors: Behrouz Mosayebi Dehkordi

Abstract:

Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.

Keywords: Dehydration, mushroom, optimization, osmotic, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
2148 Thermomechanical Studies in Glass/Epoxy Composite Specimen during Tensile Loading

Authors: K. M. Mohamed Muneer, Raghu V. Prakash, Krishnan Balasubramaniam

Abstract:

This paper presents the results of thermo-mechanical characterization of Glass/Epoxy composite specimens using Infrared Thermography technique. The specimens used for the study were fabricated in-house with three different lay-up sequences and tested on a servo hydraulic machine under uni-axial loading. Infrared Camera was used for on-line monitoring surface temperature changes of composite specimens during tensile deformation. Experimental results showed that thermomechanical characteristics of each type of specimens were distinct. Temperature was found to be decreasing linearly with increasing tensile stress in the elastic region due to thermo-elastic effect. Yield point could be observed by monitoring the change in temperature profile during tensile testing and this value could be correlated with the results obtained from stress-strain response. The extent of prior plastic deformation in the post-yield region influenced the slopes of temperature response during tensile loading. Partial unloading and reloading of specimens post-yield results in change in slope in elastic and plastic regions of composite specimens.

Keywords: Glass/Epoxy composites, Thermomechanical behavior, Infrared Thermography, Thermoelastic slope, Thermoplastic slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
2147 Probe Selection for Pathway-Specific Microarray Probe Design Minimizing Melting Temperature Variance

Authors: Fabian Horn, Reinhard Guthke

Abstract:

In molecular biology, microarray technology is widely and successfully utilized to efficiently measure gene activity. If working with less studied organisms, methods to design custom-made microarray probes are available. One design criterion is to select probes with minimal melting temperature variances thus ensuring similar hybridization properties. If the microarray application focuses on the investigation of metabolic pathways, it is not necessary to cover the whole genome. It is more efficient to cover each metabolic pathway with a limited number of genes. Firstly, an approach is presented which minimizes the overall melting temperature variance of selected probes for all genes of interest. Secondly, the approach is extended to include the additional constraints of covering all pathways with a limited number of genes while minimizing the overall variance. The new optimization problem is solved by a bottom-up programming approach which reduces the complexity to make it computationally feasible. The new method is exemplary applied for the selection of microarray probes in order to cover all fungal secondary metabolite gene clusters for Aspergillus terreus.

Keywords: bottom-up approach, gene clusters, melting temperature, metabolic pathway, microarray probe design, probe selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
2146 Temperature Control & Comfort Level of Elementary School Building with Green Roof in New Taipei City, Taiwan

Authors: Ying-Ming Su, Mei-Shu Huang

Abstract:

To mitigate the urban heat island effect has become a global issue when we are faced with the challenge of climate change. Through literature review, plant photosynthesis can reduce the carbon dioxide and mitigate the urban heat island effect to a degree. Because there are not enough open space and parks, green roof has become an important policy in Taiwan. We selected elementary school buildings in northern New Taipei City as research subjects since elementary schools are asked with priority to build green roof and important educational place to promote green roof concept. Testo175-H1 recording device was used to record the temperature and humidity differences between roof surface and interior space below roof with and without green roof in the long-term. We also use questionnaires to investigate the awareness of comfort level of green roof and sensation of teachers and students of the elementary schools. The results indicated that the temperature of roof without greening was higher than that with greening by about 2°C. But sometimes during noontime, the temperature of green roof was higher than that of non-green roof probably because of the character of the accumulation and dissipation of heat of greening. The temperature of the interior space below green roof was normally lower than that without green roof by about 1°C, showing that green roof could lower the temperature. The humidity of the green roof was higher than the one without greening also indicated that green roof retained water better. Teachers liked to combine green roof concept in the curriculum, and students wished all classes can take turns to maintain the green roof. Teachers and students whose school had integrated green roof concept in the curriculum were more willing to participate in the maintenance work of green roof. Teachers and students who may have access to and touch the green roof can be more aware of the green roof benefit. We suggest architects to increase the accessibility and visibility of green roof, such as use it as a part of the activity space. This idea can be a reference to the green roof curriculum design.

Keywords: Comfort level, elementary school, green roof, heat island effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
2145 C-V Characterization and Analysis of Temperature and Channel Thickness Effects on Threshold Voltage of Ultra-thin SOI MOSFET by Self-Consistent Model

Authors: Shuvro Chowdhury, Esmat Farzana, Rizvi Ahmed, A. T. M. Golam Sarwar, M. Ziaur Rahman Khan

Abstract:

The threshold voltage and capacitance voltage characteristics of ultra-thin Silicon-on-Insulator MOSFET are greatly influenced by the thickness and doping concentration of the silicon film. In this work, the capacitance voltage characteristics and threshold voltage of the device have been analyzed with quantum mechanical effects using the Self-Consistent model. Reduction of channel thickness and adding doping impurities cause an increase in the threshold voltage. Moreover, the temperature effects cause a significant amount of threshold voltage shift. The temperature dependence of threshold voltage has also been observed with Self- Consistent approach which are well supported from experimental performance of practical devices.

Keywords: C-V characteristics, Self-Consistent Analysis, Siliconon-Insulator, Ultra-thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2710
2144 Effect of Be, Zr and Heat Treatment on Mechanical Behavior of Cast Al-Mg-Zn-Cu Alloys (7075)

Authors: Mahmoud M. Tash

Abstract:

The present study was undertaken to investigate the effect of aging parameters (time and temperature) on the mechanical properties of Be-and/or Zr- treated Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys containing Be and/or Zr. Different aging treatment were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural and artificial aging was carried out at room temperature, 120C, 150C, 180C and 220C for different periods of time. Duplex aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation data results as a function of different aging parameters are analysed. A statistical design of experiments (DOE) approach using fractional factorial design is applied to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be- and/or Zr- treated 7075 alloys. Mathematical models are developed to relate the alloy mechanical properties with the different aging parameters.

Keywords: Casting, Aging Treatment, Mechanical Properties, Al-Mg-Zn (7075) alloys, Be- and/or Zr-Treatment, Experimental Correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
2143 Probiotics’ Antibacterial Activity on Beef and Camel Minced Meat at Altered Ranges of Temperature

Authors: Rania Samir Zaki

Abstract:

Because of their inhibitory effects, selected probiotic Lactobacilli may be used as antimicrobial against some hazardous microorganisms responsible for spoilage of fresh minced beef (cattle) minced meat and camel minced meat. Lactic acid bacteria were isolated from camel meat. These included 10 isolates; 1 Lactobacillus fermenti, 4 Lactobacillus plantarum, 4 Lactobacillus pulgaricus, 3 Lactobacillus acidophilus and 1 Lactobacillus brevis. The most efficient inhibitory organism was Lactobacillus plantarum which can be used as a propiotic with antibacterial activity. All microbiological analyses were made at the time 0, first day and the second day at altered ranges of temperature [4±2 ⁰C (chilling temperature), 25±2 ⁰C, and 38±2 ⁰C]. Results showed a significant decrease of pH 6.2 to 5.1 within variant types of meat, in addition to reduction of Total Bacterial Count, Enterococci, Bacillus cereus and Escherichia coli together with the stability of Coliforms and absence of Staphylococcus aureus.

Keywords: Antibacterial, camel meat, inhibition, probiotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
2142 Steady State Transpiration Cooling System in Ni-Cr Open-Cellular Porous Plate

Authors: P. Amatachaya, P. Khantikomol, R. Sangchot, B. Krittacom

Abstract:

The steady-state temperature for one-dimensional transpiration cooling system has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel –Chrome (Ni-Cr) open-cellular porous material having porosity of 0.93 and pores per inch (PPI) of 21.5 was examined. The upper surface of porous plate was heated by the heat flux of incoming radiation varying from 7.7 - 16.6 kW/m2 whereas air injection velocity fed into the lower surface was varied from 0.36 - 1.27 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature and conversion efficiency were presented. Temperature efficiency indicating how close the mean temperature of a porous heat plate to that of inlet air, and increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 10. The conversion efficiency, which was regarded as the ability of porous material in transferring energy by convection after absorbed from heat radiation, decreased with increasing of the heat flux and air injection velocity. In addition, it was then asymptotic to a constant value at the Re higher than 10. The numerical predictions also agreed with experimental data very well.

Keywords: Convection, open-cellular, radiation, transpiration cooling, Reynolds number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625