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Abstract—We present the calculations of the temperature
anisotropy of the cosmic microwave background radiation (CMBR)
caused by an inhomogeneous region (the clump) within the
Friedmann-Lemaitre-Robertson-Walker (FLRW) model of the
Universe build in the framework of the Randall-Sundrum one
brane model. We present two spherically symmetrical and statical
models of the clump, the braneworld Reissner-Nordstrom black hole
(bRNBH) and the perfect fluid sphere of uniform density matched
to the FLRW spacetime via an external bRNBH. The boundary of
the vacuum region expands, which induces an additional frequency
shift to a photon of the CMBR passing through this inhomogeneity
in comparison to the case of a photon propagating through a pure
FLRW spacetime. This frequency shift is associated with an effective
change of temperature of the CMBR in the corresponding direction.
We give estimates on the changes of the effective temperature of the
CMBR’s photon with the change of parameters describing the brane
and the induced tidal forces from the bulk.

Keywords—Braneworld, CMBR, Randall-Sundrum model,
Rees-Sciama effect, Reissner-Nordstrom black hole.

I. INTRODUCTION

THE primary motivation for the construction of the

Universe being represented by a 3 + 1 dimensional

braneworld embedded in a 5D bulk has been proposed in

order to resolve the hierarchy problem. Particles of matter

and fields are locked on this brane and only gravitons may

travel out into the bulk. Thanks to this leaking of gravity into

extra-dimensions, one observes that the energy scale of gravity

on the brane is much smaller compared to the energy scale of

other physical interactions [1]. In order to have the scale of

the gravitational field to match our observations, we need to

localise gravity close to the brane. One way to achieve it is to

suppose that the extra-dimensions are compactified. Another

possibility was emphasised by Randall and Sundrum [1] who

considered curved or warped geometries of the bulk. The

extra-dimensions may spread to infinity while the localisation

of gravity next to the brane is ensured by a negative bulk’s

constant Λ = − 6
l2 , where l is the radius of curvature of

the AdS5 spacetime. The effective gravitational constant Λ
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is related to the fundamental bulk’s cosmological constant by

the relation

Λ =
1

2

[
Λ5 − κ2λ

]
(1)

where λ is the brane tension and is defined by λ = 6k
κ and

κ2
d ≡ 8π

Md−1
d+1

where Md−1
d+1 is the Planck mass in (d + 1)−

dimensions.

In the RS II braneworld scenario [2], the 5D Einstein’s

equations in the bulk are written as (5)GAB = −Λ
(5)
5 gAB .

Projecting the 5D curvature, imposing the Z2 symmetry and

the Israel-Darmois junction conditions, Shiromizu et al. [9]

have derived the effective Einstein’s equations on the brane

Gμν = κ2Tμν + 6
κ2

λ
Sμν − Λgμν − εμν (2)

where Sμν is the high-energy correction term and is defined as

Sμν ∼ (Tμν)
2
. The high-energy correction term is negligible

for ρ << λ but becomes dominant for ρ >> λ:∣∣∣κ2 Sμν

λ

∣∣∣
κ2Tμν

∼ |Tμν |
λ

∼ ρ

λ
. (3)

A. CMBR

The Cosmic Microwave Background Radiation (CMBR)

is the oldest light in the universe. It is seen today as a

black body radiation at a near uniform temperature of 2.73 K

covering the whole sky. This radiation field is not perfectly

uniform but includes small anisotropies of temperature of

the order of ΔT/T ∼ 10−5. There are several kinds

of temperature anisotropies of the CMBR, they have their

origin in several sources, in the intrinsic fluctuations in the

electron-nucleon-photon plasma, in the Doppler effect caused

by the velocity fluctuations in the plasma, in the gravitational

redshift/blue shift due to the Sachs-Wolfe effect and in

the gravitational redshift/blueshift due to the time varying

gravitational potential taking place between the Last Scattering

Surface and our present epoch. The last type of temperature

fluctuation is sometimes called the Rees-Sciama effect [3] and

it is the key effect we study in this work. Some physical

processes that occurred in the early Universe have left their

fingerprints in these anisotropies of the CMBR, therefore the

temperature anisotropies of the CMBR play an important role

in our understanding on the origin of the growth of fluctuations

of matter density, which grew later to become galaxies and

other large scale structures we may observe in the Universe
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today, they are the birth certificate of the Universe. With the

Big Bang being confirmed as the correct model of creation

of our Universe, it is essential to use the observations of the

CMBR to better understand this model and to study the physics

of the Big Bang and the processes that led to the formation

of large scale structures in the Universe as the anisotropies of

the CMBR are believed to be caused by inhomogeneities in

the distribution of matter during the period of Recombination

[8].

In this work, we have determined the temperature

fluctuations of the Cosmic Microwave Background radiation in

the framework of the braneworld model using the Rees-Sciama

effect. We model the inhomogeneity of matter by a braneworld

Reissner-Nordstrom black hole spacetime and by a halo of

constant density having a braneworld Reissner-Nordstrom

vacuum matched to the FLRW spacetime.

B. Braneworld Cosmology

Fields and matter are localised on a 3-brane immersed in a

5D bulk. The bulk’s spacetime with a spatial 4-isotropy can

be naturally foliated into 1+3 dimensional FLRW surfaces.

The induced spacetime metric on the brane describing the

expanding Universe is simply [7]

ds2 = −dT 2 + a2(T )
[
dχ2 +Σ2

k(χ)(dθ
2 + sin2 θdφ2)

]
(4)

This spacetime geometry is applied to the effective

Einstein’s equations on the brane with the appropriate perfect

fluid stress-energy tensor. The Friedman equation then reads

H2 =
8πG

3
ρ
(
1 +

ρ

2λ

)
+

μ

a4
+

Λ

3
− k

a2
. (5)

Here we constraint ourselves to the case when Λ = 0 (we

tune the bulk’s cosmological constant so that the braneworld

cosmological constant is zero). The parameter μ represents the

mass of the bulk’s black hole which affects the expansion of

the brane, contributing to the matter on the brane in the form

of the so called ”dark radiation”. The parameter k represents

the curvature index of spacetime (k = 0,±1).

Schematically, the model of the clump is illustrated in Fig.

1. We replace a FLRW sphere made of dust having a mass

M by a static and spherically symmetrical spacetime of the

same mass. The matching hypersurface separating the FLRW

spacetime from the clump spacetime is comoving with the

cosmic observers from the FLRW.

C. Black Hole on a Brane

The spherically symmetric and static black hole solution on

the brane is the braneworld Reissner-Nordstrom solution [11]

having the spacetime interval

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2

(
dθ2 + sin2 θdφ2

)
(6)

where

f(r) = 1− 2GM

r
+

q

r2
(7)

and the parameter q is the ”tidal charge” representing the local

tidal effects from the bulk (the leaked gravity is reflected back

by the negative bulk cosmological constant).

Fig. 1 Illustration of the clump models: braneworld R-N black hole (top),
braneworld constant density halo (bottom)

D. The Perfect Fluid Sphere Spacetime

The spherical inhomogeneity is represented by a perfect

fluid sphere of constant density, representing a galactic halo

of mass M and of a radius R that is matched to the FLRW

spacetime through the vacuum braneworld RN spacetime

region (see Fig. 1 bottom). This system is gravitationally

bounded and is separated from the rest of the expanding

Universe. The spacetime interval reads [10]

ds2 = −f(r)dt2 + h(r)dr2 + r2
(
dθ2 + sin2 θ dφ2

)
(8)

where

f(r) =

⎧⎨
⎩
(

α
ρ+p(r)

)2

, for r < R

1− 2M
r + q

r2 , for r � R
(9)

with

p(r) =
ρ[A(r)−A(R)](1 + ρ/λ)

[3A(R)−A(r)] + [3A(R)− 2A(r)]ρ/λ
, (10)

A(r) =

[
1− 2M

r

( r

R

)3 (
1 +

ρ

2λ

)]1/2
, (11)

α = ρA(R), (12)

M = M(1− ρ/λ), (13)

q = −3GMRρ/λ (14)
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and

h−1(r) =

{
A2(r) for r < R

1− 2M
r + q

r2 for r � R.
(15)

Later we will use the above-mentioned models of the clump

for the calculation of the temperature anisotropy of the CMBR.

E. The Mathing Hypersurface

Both clumps’ spacetimes are matched to the external

expanding braneworld FLRW spacetime. The matching

hypersuface is made out of radially moving observers and is

equipped with the 3-spacetime intervals of the form [5], [6]

ds2+ = −dT 2 + a2(T )Σ2
k(χS)(dθ

2 + sin2 θdφ2), (16)

ds2− = −f(rs)dt
2 +

dr2

f(rs)
+ r2s(dθ

2 + sin2 θdφ2).(17)

Clearly, both spacetime intervals must be the same, i.e.

ds2+ = ds2− and it implies the following conditions:

• the proper time of the preceding radial observers sitting

on the matching hypersurface is identical to the cosmic

time of the cosmic observers, i.e.

dT 2 = f(rs)dt
2 +

1

f(rs)
dr2, (18)

• the radial coordinate rs of the boundary and its comoving

radius χs are related by the condition

rs(T ) = a(T )Σk(χs). (19)

One can be convinced that this junction condition is

satisfying by calculating the relevant components of the

extrinsic curvature Kμν on both sides of the boundary and

finding K+
μν = K−

μν , see e.g. [5].

The radial geodesics in the vacuum region of the clump

have the following form(
drs
dτ

)2

= E2
s − f(rs) = E2

s − 1 +
2M

r
− q

r2
, (20)

dt

dτ
=

Es

f(r)
. (21)

The covariant energy of the radial geodesics Es is associated

with the expansion rate of the FLRW external spacetime.

We rewrite the Friedmann equation (5) using the junction

condition (19) to read(
drs
dT

)2

=
8πG

3
ρ
(
1 +

ρ

2λ

)
+

μΣ4
k(χs)

r4s
− kΣ2

k(χs). (22)

Assuming that the expansion of the FLRW spacetime is

dominated by the incoherent dust, i.e. ρ r3s = ρ0 r
3
s0, where rs0

is the radius of the clump at our present epoch, and assuming

ρ � λ, meaning that the brane tension is much larger than

the energy density of matter, i.e. ρeff = ρ(1 + ρ/(2λ)) ≈ ρ,

we can write down the following identities, (comparing (22)

with (20))

E2
s = 1− kΣ2

k(χs), (23)

q = −μΣ4
k(χs), (24)

M =
4π

3
ρ
(
1 +

ρ

2λ

)
r3s . (25)

II. PROPAGATION OF THE PHOTONS

In order to resolve the effect of the clump on the temperature

of the CMBR, we need the equations of motion of the CMBR’s

photon to handle its propagation through the boundary and

inside the clump. The equations of motion are derived from

the Hamilton-Jacobi equations and they read

• FLRW

kT =
1

rs
, (26)

kχ =
Σk(χs)

r2s

√
1− b2

Σ2
k(χs)

Σ2
k(χ)

, (27)

kφ =
L

r2s

Σ2
k(χs)

Σ2
k(χ)

(28)

• Clump

kt =
E0

f(r)
, (29)

(kr)2 =
1

f(r)h(r)

[
E2

0 − f(r)
L2

r2

]
, (30)

kφ =
L

r2
. (31)

Note that in the RN region of the clump there is h(r) =
1/f(r) and the equation for kr will then read

(kr)2 = E2
0 − f(r)

L2

r2
. (32)

The longer it takes the photon to propagate through the

clump, the higher will be the temperature anisotropy, as we

will show later. Now we must determine the constants of

motion for the photon L and E0. Due to the isotropy of the

FLRW and the clump, the parameter L, the angular momentum

of the photon is identical for both sides of the boundary and

we treat is as a free parameter in our model. We are left

with the constant E0 now. There are at least two ways to

determine E0. Here we express the kt component in terms of

k(a) components with respect to the tetrade of the observers

comoving with the boundary and find out that E0 satisfies the

equation

E0 rout =
√

1− kΣ2
k(χs)+

√
1− f(rout)− kΣ2

k(χs)
√

1− L2

(33)
This formula will be used soon to determine the change of

the temperature of the CMBR.

III. THE TEMPERATURE ANISOTROPY OF THE CMBR

The photons from the CMBR propagate from the Last

Scattering Surface (LSS) throughout the expanding Universe

toward us. As the universe is expanding, the radiation energy

density decreases and the corresponding effective temperature

Θ decreases too. We have the formula

ΘLSS

Θ0
=

a0
aLSS

= (1 + z)LSS . (34)

This formula will change when we replace a part of the

FLRW spacetime by a spherically symmetrical clump. We first

split the formula (34) to read

ΘLSS

Θ0
=

a0
aout

aout
ain

ain
aLSS

(35)
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where aout is the magnitude of the scale parameter at

the moment a CMBR photon leaves the clump and ain
corresponds to the moment when this photon enters the clump.

Let us call this ratio Δ and replace it by a general frequency

shift caused by the clump (1 + z)c.

ΘLSS

Θc
0

=
a0
aout

(1 + z)c
ain
aLSS

. (36)

We measure the effect of the clump on the temperature of

the CMBR by the ratio [4]

Θc
0

Θ0
=

Δ

(1 + z)c
(37)

where we have used (34 and 36). Note, due to (19) the

parameter is Δ = rout/rin.

Now, let’s assume that a CMBR photon leaves the clump

when its radius is rout. We want to determine what was the

radius, rin, of the clump when a photon entered the clump.

This is determined by comparing the coordinate interval Δtc
with the coordinate time interval Δtp it takes the clump to

grow from rin to rout and therefore how long it takes a photon

to travel through the clump, i.e.

Δtc = Δtp (38)

and one arrives to (we apply the definition of Δ):

Δtc =

∫ rout

rout/Δ

√
1− kΣ2

k(χs)drs

f(rs)
√

1− f(rs)− kΣ2
k(χs)

(39)

and

Δtp =

∫ rout/Δ

rt

√
h(r)

f(r)

dr√
1− f(r)L2/(r2 E2

0)

+

∫ rout

rt

√
h(r)

f(r)

dr√
1− f(r)L2/(r2 E2

0)
(40)

where rt is the turning point of the null geodesics in the clump

satisfying the equation

E2
0 r

2
t = f(rt)L

2. (41)

The last thing we need to determine is the temperature

anisotropy of the CMBR, (1 + z)c. It is simply the ratio

of the energy of the CMBR’s photon measured at the clump

boundary in the moment it enters the clump to its energy when

it leaves the clump, i.e.

(1 + z)c =
uαkα|in
uαkα|out . (42)

One easily arrive at:

(1 + z)c =
fo

fi

√
1− kΣ2

k(s)
+

√
1− kΣ2

k(s)
− fi

√
1− fi b2/(ri l20)

√
1− kΣ2

k(s)
−

√
1− kΣ2

k(s)
− fo

√
1− fo b2/(ro l20)

(43)

IV. RESULTS

The procedure to calculate the temperature anisotropies of

the CMBR due to a spherically symmetrical clump is the

following:

1) Setting up the spacetime parameters: M , rs0, q, k.

2) Set the clump radius rout.
3) Set the parameter b of the photon (angular momentum).

4) Determine the constant l0 from the formula (33).

5) Solve the equation (38) for Δ.

6) Determine (1 + z)c from the formula (43).

7) Determine Θc
0/Θ0 from (37).

Following the steps of this procedure, we have constructed

several plots illustrating the effect of the braneworld parameter

q on the temperature anisotropy.
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Fig. 2 Plots of relative temperature anisotropy 1− (Θc
0/Θ0)BW /(Θc

0/Θ0)
with respect to the normalized ratio x ≡ ρS/λ. The clump is represented

by a perfect fluid halo of constant density attached to the FLRW spacetime
via the vacuum R-N shell. Here we compare the effect of different radii

when the photon is leaving the clump, ro
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Fig. 3 Plots of relative temperature anisotropy 1− (Θc
0/Θ0)BW /(Θc

0/Θ0)
with respect to the normalized ratio x ≡ ρS/λ. The clump is represented
by a braneworld R-N black hole spacetime. Here we compare the effect of

different radii when the photon is leaving the clump, ro
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Fig. 4 Plots of relative temperature anisotropy 1− (Θc
0/Θ0)BW /(Θc

0/Θ0)
with respect to the normalized ratio x ≡ ρS/λ. The clump is represented by
a perfect fluid halo of constant density attached to the FLRW spacetime via
the vacuum R-N shell (red) and by the braneworld R-N black hole spacetime

(blue). The radius when the photon is leaving the clump is ro = 1500M
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Fig. 5 Plots of relative temperature anisotropy 1− (Θc
0/Θ0)BW /(Θc

0/Θ0)
with respect to the normalized ratio x ≡ ρS/λ. The clump is represented by
a perfect fluid halo of constant density attached to the FLRW spacetime via
the vacuum R-N shell (red) and by the braneworld R-N black hole spacetime

(blue). The radius when the photon is leaving the clump is ro = 2000M

V. CONCLUSION

We have built a vacuola model where in the Friedmann

background is joined a clump made of a bRNBH or a perfect

fluid sphere. The junction conditions defines the expansion of

the clump in time. As a result of this expansion, we obtain

a redshift that changes the temperature fluctuations of the

CMBR. We observe from our simulations that the fluctuations

are higher for smaller clumps and the presence of a perfect

fluid sphere increases the fluctuations of the CMBR compared

to the model without a perfect sphere.
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