Search results for: Cost optimization modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4134

Search results for: Cost optimization modelling

3684 Multidimensional Compromise Optimization for Development Ranking of the Gulf Cooperation Council Countries and Turkey

Authors: C. Ardil

Abstract:

In this research, a multidimensional  compromise optimization method is proposed for multidimensional decision making analysis in the development ranking of the Gulf Cooperation Council Countries and Turkey. The proposed approach presents ranking solutions resulting from different multicriteria decision analyses, which yield different ranking orders for the same ranking problem, consisting of a set of alternatives in terms of numerous competing criteria when they are applied with the same numerical data. The multiobjective optimization decision making problem is considered in three sequential steps. In the first step, five different criteria related to the development ranking are gathered from the research field. In the second step, identified evaluation criteria are, objectively, weighted using standard deviation procedure. In the third step, a country selection problem is illustrated with a numerical example as an application of the proposed multidimensional  compromise optimization model. Finally, multidimensional  compromise optimization approach is applied to rank the Gulf Cooperation Council Countries and Turkey. 

Keywords: Standard deviation, performance evaluation, multicriteria decision making, multidimensional compromise optimization, vector normalization, multicriteria decision making, multicriteria analysis, multidimensional decision analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
3683 Multi-Objective Optimization of Combined System Reliability and Redundancy Allocation Problem

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents established 3n enumeration procedure for mixed integer optimization problems for solving multi-objective reliability and redundancy allocation problem subject to design constraints. The formulated problem is to find the optimum level of unit reliability and the number of units for each subsystem. A number of illustrative examples are provided and compared to indicate the application of the superiority of the proposed method.

Keywords: Integer programming, mixed integer programming, multi-objective optimization, reliability redundancy allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647
3682 Feature Subset Selection Using Ant Colony Optimization

Authors: Ahmed Al-Ani

Abstract:

Feature selection is an important step in many pattern classification problems. It is applied to select a subset of features, from a much larger set, such that the selected subset is sufficient to perform the classification task. Due to its importance, the problem of feature selection has been investigated by many researchers. In this paper, a novel feature subset search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
3681 Multi-objective Optimization of Graph Partitioning using Genetic Algorithm

Authors: M. Farshbaf, M. R. Feizi-Derakhshi

Abstract:

Graph partitioning is a NP-hard problem with multiple conflicting objectives. The graph partitioning should minimize the inter-partition relationship while maximizing the intra-partition relationship. Furthermore, the partition load should be evenly distributed over the respective partitions. Therefore this is a multiobjective optimization problem (MOO). One of the approaches to MOO is Pareto optimization which has been used in this paper. The proposed methods of this paper used to improve the performance are injecting best solutions of previous runs into the first generation of next runs and also storing the non-dominated set of previous generations to combine with later generation's non-dominated set. These improvements prevent the GA from getting stuck in the local optima and increase the probability of finding more optimal solutions. Finally, a simulation research is carried out to investigate the effectiveness of the proposed algorithm. The simulation results confirm the effectiveness of the proposed method.

Keywords: Graph partitioning, Genetic algorithm, Multiobjective optimization, Pareto front.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
3680 Application of Costing System in the Small and Medium Sized Enterprises (SME) in Turkey

Authors: Hamide Özyürek, Metin Yılmaz

Abstract:

Standard processes, similar and limited production lines, the production of high direct costs will be more accurate than the use of parts of the traditional cost systems in the literature. However, direct costs, overhead expenses, in turn, decrease the burden of increasingly sophisticated production facilities, a situation that led the researchers to look for the cost of traditional systems of alternative techniques. Variety cost management approaches for example Total quality management (TQM), just-in-time (JIT), benchmarking, kaizen costing, targeting cost, life cycle costs (LLC), activity-based costing (ABC) value engineering have been introduced. Management and cost applications have changed over the past decade and will continue to change. Modern cost systems can provide relevant and accurate cost information. These methods provide the decisions about customer, product and process improvement. The aim of study is to describe and explain the adoption and application of costing systems in SME. This purpose reports on a survey conducted during 2014 small and medium sized enterprises (SME) in Ankara. The survey results were evaluated using SPSS18 package program.

Keywords: Cost Accounting, Costing, Modern Costing Systems, Managerial Accounting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5305
3679 A Hybrid Multi-Objective Firefly-Sine Cosine Algorithm for Multi-Objective Optimization Problem

Authors: Gaohuizi Guo, Ning Zhang

Abstract:

Firefly algorithm (FA) and Sine Cosine algorithm (SCA) are two very popular and advanced metaheuristic algorithms. However, these algorithms applied to multi-objective optimization problems have some shortcomings, respectively, such as premature convergence and limited exploration capability. Combining the privileges of FA and SCA while avoiding their deficiencies may improve the accuracy and efficiency of the algorithm. This paper proposes a hybridization of FA and SCA algorithms, named multi-objective firefly-sine cosine algorithm (MFA-SCA), to develop a more efficient meta-heuristic algorithm than FA and SCA.

Keywords: Firefly algorithm, hybrid algorithm, multi-objective optimization, Sine Cosine algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 482
3678 Fuzzy Cost Support Vector Regression

Authors: Hadi Sadoghi Yazdi, Tahereh Royani, Mehri Sadoghi Yazdi, Sohrab Effati

Abstract:

In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.

Keywords: Support vector regression, Fuzzy input, Fuzzy cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
3677 Modelling the States of Public Client Participation in Public Private Partnership Arrangements

Authors: Eisa A. Alsafran, Francis T. Edum-Fotwe, Wayne E. Lord

Abstract:

The degree to which a public client actively participates in Public Private Partnership (PPP) schemes, is seen as a determinant of the success of the arrangement, and in particular, efficiency in the delivery of the assets of any infrastructure development. The asset delivery is often an early barometer for judging the overall performance of the PPP. Currently, there are no defined descriptors for the degree of such participation. The lack of defined descriptors makes the association between the degree of participation and efficiency of asset delivery, difficult to establish. This is particularly so if an optimum effect is desired. In addition, such an association is important for the strategic decision to embark on any PPP initiative. This paper presents a conceptual model of different levels of participation that characterise PPP schemes. The modelling was achieved by a systematic review of reported sources that address essential aspects and structures of PPP schemes, published from 2001 to 2015. As a precursor to the modelling, the common areas of Public Client Participation (PCP) were investigated. Equity and risk emerged as two dominant factors in the common areas of PCP, and were therefore adopted to form the foundation of the modelling. The resultant conceptual model defines the different states of combined PCP. The defined states provide a more rational basis for establishing how the degree of PCP affects the efficiency of asset delivery in PPP schemes.

Keywords: Asset delivery, infrastructure development, public private partnership, public client participation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
3676 Evaluation of the exIWO Algorithm Based On the Traveling Salesman Problem

Authors: Daniel Kostrzewa, Henryk Josiński

Abstract:

The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.

Keywords: Expanded Invasive Weed Optimization algorithm (exIWO), Traveling Salesman Problem (TSP), heuristic approach, inversion operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
3675 Unrelated Parallel Machines Scheduling Problem Using an Ant Colony Optimization Approach

Authors: Y. K. Lin, H. T. Hsieh, F. Y. Hsieh

Abstract:

Total weighted tardiness is a measure of customer satisfaction. Minimizing it represents satisfying the general requirement of on-time delivery. In this research, we consider an ant colony optimization (ACO) algorithm to solve the problem of scheduling unrelated parallel machines to minimize total weighted tardiness. The problem is NP-hard in the strong sense. Computational results show that the proposed ACO algorithm is giving promising results compared to other existing algorithms.

Keywords: ant colony optimization, total weighted tardiness, unrelated parallel machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
3674 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic

Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin

Abstract:

In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.

Keywords: Binary cat swarm optimization, set covering problem, metaheuristic, binarization methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
3673 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Nadia Belu, Laurentiu M. Ionescu, Agnieszka Misztal

Abstract:

In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: Automotive industry, control plan, FMEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2860
3672 Tuning of Power System Stabilizers in a Multi- Machine Power System using C-Catfish PSO

Authors: M. H. Moradi, S. M. Moosavi, A. R. Reisi

Abstract:

The main objective of this paper is to investigate the enhancement of power system stability via coordinated tuning of Power System Stabilizers (PSSs) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem. Chaotic catfish particle swarm optimization (C-Catfish PSO) algorithm is used to minimize the ITAE objective function. The proposed algorithm is evaluated on a two-area, 4- machines system. The robustness of the proposed algorithm is verified on this system under different operating conditions and applying a three-phase fault. The nonlinear time-domain simulation results and some performance indices show the effectiveness of the proposed controller in damping power system oscillations and this novel optimization algorithm is compared with particle swarm optimization (PSO).

Keywords: Power system stabilizer, C-Catfish PSO, ITAE objective function, Power system control, Multi-machine power system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
3671 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong

Abstract:

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Keywords: Differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150
3670 Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters

Authors: S. Venkateswaran, C. Mallika Parveen

Abstract:

The fluid flow and the properties of the hydraulic fluid inside a torque converter are the main topics of interest in this research. The primary goal is to investigate the applicability of various viscous fluids inside the torque converter. The Taguchi optimization method is adopted to analyse the fluid flow in a torque converter from a design perspective. Calculations are conducted in maximizing the pressure since greater the pressure, greater the torque developed. Using the values of the S/N ratios obtained, graphs are plotted. Computational Fluid Dynamics (CFD) analysis is also conducted.

Keywords: Hydraulic fluid, Taguchi's method, optimization, pressure, torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3062
3669 Scheduling Multiple Workflow Using De-De Dodging Algorithm and PBD Algorithm in Cloud: Detailed Study

Authors: B. Arun Kumar, T. Ravichandran

Abstract:

Workflow scheduling is an important part of cloud computing and based on different criteria it decides cost, execution time, and performances. A cloud workflow system is a platform service facilitating automation of distributed applications based on new cloud infrastructure. An aspect which differentiates cloud workflow system from others is market-oriented business model, an innovation which challenges conventional workflow scheduling strategies. Time and Cost optimization algorithm for scheduling Hybrid Clouds (TCHC) algorithm decides which resource should be chartered from public providers is combined with a new De-De algorithm considering that every instance of single and multiple workflows work without deadlocks. To offset this, two new concepts - De-De Dodging Algorithm and Priority Based Decisive Algorithm - combine with conventional deadlock avoidance issues by proposing one algorithm that maximizes active (not just allocated) resource use and reduces Makespan.

Keywords: Workflow Scheduling, cloud workflow, TCHC algorithm, De-De Dodging Algorithm, Priority Based Decisive Algorithm (PBD), Makespan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
3668 Vibration Base Identification of Impact Force Using Genetic Algorithm

Authors: R. Hashemi, M.H.Kargarnovin

Abstract:

This paper presents the identification of the impact force acting on a simply supported beam. The force identification is an inverse problem in which the measured response of the structure is used to determine the applied force. The identification problem is formulated as an optimization problem and the genetic algorithm is utilized to solve the optimization problem. The objective function is calculated on the difference between analytical and measured responses and the decision variables are the location and magnitude of the applied force. The results from simulation show the effectiveness of the approach and its robustness vs. the measurement noise and sensor location.

Keywords: Genetic Algorithm, Inverse problem, Optimization, Vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
3667 Multiple Object Tracking using Particle Swarm Optimization

Authors: Chen-Chien Hsu, Guo-Tang Dai

Abstract:

This paper presents a particle swarm optimization (PSO) based approach for multiple object tracking based on histogram matching. To start with, gray-level histograms are calculated to establish a feature model for each of the target object. The difference between the gray-level histogram corresponding to each particle in the search space and the target object is used as the fitness value. Multiple swarms are created depending on the number of the target objects under tracking. Because of the efficiency and simplicity of the PSO algorithm for global optimization, target objects can be tracked as iterations continue. Experimental results confirm that the proposed PSO algorithm can rapidly converge, allowing real-time tracking of each target object. When the objects being tracked move outside the tracking range, global search capability of the PSO resumes to re-trace the target objects.

Keywords: multiple object tracking, particle swarm optimization, gray-level histogram, image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4080
3666 Shape Restoration of the Left Ventricle

Authors: May-Ling Tan, Yi Su, Chi-Wan Lim, Liang Zhong, Ru-San Tan

Abstract:

This paper describes an automatic algorithm to restore the shape of three-dimensional (3D) left ventricle (LV) models created from magnetic resonance imaging (MRI) data using a geometry-driven optimization approach. Our basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration. A geometrical measure known as the Minimum Principle Curvature (κ2) is used to assess the smoothness of the LV. This measure is used to construct the objective function of a two-step optimization process. The objective of the optimization is to achieve a smooth epicardial shape by iterative in-plane translation of the MRI slices. Quantitatively, this yields a minimum sum in terms of the magnitude of κ 2, when κ2 is negative. A limited memory quasi-Newton algorithm, L-BFGS-B, is used to solve the optimization problem. We tested our algorithm on an in vitro theoretical LV model and 10 in vivo patient-specific models which contain significant motion artifacts. The results show that our method is able to automatically restore the shape of LV models back to smoothness without altering the general shape of the model. The magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.

Keywords: Magnetic Resonance Imaging, Left Ventricle, ShapeRestoration, Principle Curvature, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
3665 Replicating Data Objects in Large-scale Distributed Computing Systems using Extended Vickrey Auction

Authors: Samee Ullah Khan, Ishfaq Ahmad

Abstract:

This paper proposes a novel game theoretical technique to address the problem of data object replication in largescale distributed computing systems. The proposed technique draws inspiration from computational economic theory and employs the extended Vickrey auction. Specifically, players in a non-cooperative environment compete for server-side scarce memory space to replicate data objects so as to minimize the total network object transfer cost, while maintaining object concurrency. Optimization of such a cost in turn leads to load balancing, fault-tolerance and reduced user access time. The method is experimentally evaluated against four well-known techniques from the literature: branch and bound, greedy, bin-packing and genetic algorithms. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution quality.

Keywords: Auctions, data replication, pricing, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
3664 PSO Based Optimal Design of Fractional Order Controller for Industrial Application

Authors: Rohit Gupta, Ruchika

Abstract:

In this paper, a PSO based fractional order PID (FOPID) controller is proposed for concentration control of an isothermal Continuous Stirred Tank Reactor (CSTR) problem. CSTR is used to carry out chemical reactions in industries, which possesses complex nonlinear dynamic characteristics. Particle Swarm Optimization algorithm technique, which is an evolutionary optimization technique based on the movement and intelligence of swarm is proposed for tuning of the controller for this system. Comparisons of proposed controller with conventional and fuzzy based controller illustrate the superiority of proposed PSO-FOPID controller.

Keywords: CSTR, Fractional Order PID Controller, Partical Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
3663 Design Optimization of Aerocapture with Aerodynamic-Environment-Adaptive Variable Geometry Flexible Aeroshell

Authors: Naohiko Honma, Kojiro Suzuki

Abstract:

This paper proposes the concept of aerocapture with aerodynamic-environment-adaptive variable geometry flexible aeroshell that vehicle deploys. The flexible membrane is composed of thin-layer film or textile as its aeroshell in order to solve some problems obstructing realization of aerocapture technique. Multi-objective optimization study is conducted to investigate solutions and derive design guidelines. As a result, solutions which can avoid aerodynamic heating and enlarge the corridor width up to 10% are obtained successfully, so that the effectiveness of this concept can be demonstrated. The deformation-use optimum solution changes its drag coefficient from 1.6 to 1.1, along with the change in dynamic pressure. Moreover, optimization results show that deformation-use solution requires the membrane for which upper temperature limit and strain limit are more than 700 K and 120%, respectively, and elasticity (Young-s modulus) is of order of 106 Pa.

Keywords: Aerocapture, flexible aeroshell, optimization, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982
3662 Optimal Design of Airfoil with High Aspect Ratio in Unmanned Aerial Vehicles

Authors: Kyoungwoo Park, Ji-Won Han, Hyo-Jae Lim, Byeong-Sam Kim, Juhee Lee

Abstract:

Shape optimization of the airfoil with high aspect ratio of long endurance unmanned aerial vehicle (UAV) is performed by the multi-objective optimization technology coupled with computational fluid dynamics (CFD). For predicting the aerodynamic characteristics around the airfoil the high-fidelity Navier-Stokes solver is employed and SMOGA (Simple Multi-Objective Genetic Algorithm), which is developed by authors, is used for solving the multi-objective optimization problem. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that is decided by airfoil shapes can be obtained.

Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Lift-to-drag ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6413
3661 Reservoir Operating by Ant Colony Optimization for Continuous Domains (ACOR) Case Study: Dez Reservoir

Authors: A. B. Dariane, A. M. Moradi

Abstract:

A direct search approach to determine optimal reservoir operating is proposed with ant colony optimization for continuous domains (ACOR). The model is applied to a system of single reservoir to determine the optimum releases during 42 years of monthly steps. A disadvantage of ant colony based methods and the ACOR in particular, refers to great amount of computer run time consumption. In this study a highly effective procedure for decreasing run time has been developed. The results are compared to those of a GA based model.

Keywords: Ant colony optimization, continuous, metaheuristics, reservoir, decreasing run time, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
3660 Fixture Layout Optimization for Large Metal Sheets Using Genetic Algorithm

Authors: Zeshan Ahmad, Matteo Zoppi, Rezia Molfino

Abstract:

The geometric errors in the manufacturing process can be reduced by optimal positioning of the fixture elements in the fixture to make the workpiece stiff. We propose a new fixture layout optimization method N-3-2-1 for large metal sheets in this paper that combines the genetic algorithm and finite element analysis. The objective function in this method is to minimize the sum of the nodal deflection normal to the surface of the workpiece. Two different kinds of case studies are presented, and optimal position of the fixturing element is obtained for different cases.

Keywords: Fixture layout, optimization, fixturing element, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
3659 A Heuristic Algorithm Approach for Scheduling of Multi-criteria Unrelated Parallel Machines

Authors: Farhad Kolahan, Vahid Kayvanfar

Abstract:

In this paper we address a multi-objective scheduling problem for unrelated parallel machines. In unrelated parallel systems, the processing cost/time of a given job on different machines may vary. The objective of scheduling is to simultaneously determine the job-machine assignment and job sequencing on each machine. In such a way the total cost of the schedule is minimized. The cost function consists of three components, namely; machining cost, earliness/tardiness penalties and makespan related cost. Such scheduling problem is combinatorial in nature. Therefore, a Simulated Annealing approach is employed to provide good solutions within reasonable computational times. Computational results show that the proposed approach can efficiently solve such complicated problems.

Keywords: Makespan, Parallel machines, Scheduling, Simulated Annealing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
3658 Optimal Design of Airfoil Platform Shapes with High Aspect Ratio Using Genetic Algorithm

Authors: Kyoungwoo Park, Byeong-Sam Kim

Abstract:

Unmanned aerial vehicles (UAVs) performing their operations for a long time have been attracting much attention in military and civil aviation industries for the past decade. The applicable field of UAV is changing from the military purpose only to the civil one. Because of their low operation cost, high reliability and the necessity of various application areas, numerous development programs have been initiated around the world. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that are decided by airfoil shapes can be obtained.

Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
3657 Bandwidth Optimization through Dynamic Routing in ATM Networks: Genetic Algorithm and Tabu Search Approach

Authors: Susmi Routray, A. M. Sherry, B. V. R. Reddy

Abstract:

Asynchronous Transfer Mode (ATM) is widely used in telecommunications systems to send data, video and voice at a very high speed. In ATM network optimizing the bandwidth through dynamic routing is an important consideration. Previous research work shows that traditional optimization heuristics result in suboptimal solution. In this paper we have explored non-traditional optimization technique. We propose comparison of two such algorithms - Genetic Algorithm (GA) and Tabu search (TS), based on non-traditional Optimization approach, for solving the dynamic routing problem in ATM networks which in return will optimize the bandwidth. The optimized bandwidth could mean that some attractive business applications would become feasible such as high speed LAN interconnection, teleconferencing etc. We have also performed a comparative study of the selection mechanisms in GA and listed the best selection mechanism and a new initialization technique which improves the efficiency of the GA.

Keywords: Asynchronous Transfer Mode(ATM), GeneticAlgorithm(GA), Tabu Search(TS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
3656 Analysis of Cost Estimation and Payment Systems for Consultant Contracts in the US, Japan, China and the UK

Authors: Shih-Hsu Wang, Yuan-Yuan Cheng, Ming-Tsung Lee, Wei-Chih Wang

Abstract:

Determining reasonable fees is the main objective of designing the cost estimation and payment systems for consultant contracts. However, project clients utilize different cost estimation and payment systems because of their varying views on the reasonableness of consultant fees. This study reviews the cost estimation and payment systems of consultant contracts for five countries, including the US (Washington State Department of Transportation), Japan (Ministry of Land, Infrastructure, Transport and Tourism), China (Engineering Design Charging Standard) and UK (Her Majesty's Treasure). Specifically, this work investigates the budgeting process, contractor selection method, contractual price negotiation process, cost review, and cost-control concept of the systems used in these countries. The main finding indicates that that project client-s view on whether the fee is high will affect the way he controls it. In the US, the fee is commonly considered to be high. As a result, stringent auditing system (low flexibility given to the consultant) is then applied. In the UK, the fee is viewed to be low by comparing it to the total life-cycle project cost. Thus, a system that has high flexibility in budgeting and cost reviewing is given to the consultant. In terms of the flexibility allowed for the consultant, the systems applied in Japan and China fall between those of the US and UK. Both the US and UK systems are helpful in determining a reasonable fee. However, in the US system, rigid auditing standards must be established and additional cost-audit manpower is required. In the UK system, sufficient historical cost data should be needed to evaluate the reasonableness of the consultant-s proposed fee

Keywords: Consultant Services, Cost Estimation and Payment System, Payment Flexibility, Cost-control Concept

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
3655 Modelling of Powered Roof Supports Work

Authors: Marcin Michalak

Abstract:

Due to the increasing efforts on saving our natural environment a change in the structure of energy resources can be observed - an increasing fraction of a renewable energy sources. In many countries traditional underground coal mining loses its significance but there are still countries, like Poland or Germany, in which the coal based technologies have the greatest fraction in a total energy production. This necessitates to make an effort to limit the costs and negative effects of underground coal mining. The longwall complex is as essential part of the underground coal mining. The safety and the effectiveness of the work is strongly dependent of the diagnostic state of powered roof supports. The building of a useful and reliable diagnostic system requires a lot of data. As the acquisition of a data of any possible operating conditions it is important to have a possibility to generate a demanded artificial working characteristics. In this paper a new approach of modelling a leg pressure in the single unit of powered roof support. The model is a result of the analysis of a typical working cycles.

Keywords: Machine modelling, underground mining, coal mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903