Search results for: swarm intelligence
227 Design of an Artificial Intelligence Based Automatic Task Planner or a Robotic System
Authors: T. C. Manjunath, C. Ardil
Abstract:
This paper deals with the design and the implementation of an automatic task planner for a robot, irrespective of whether it is a stationary robot or a mobile robot. The aim of the task planner nothing but, they are planning systems which are used to plan a particular task and do the robotic manipulation. This planning system is embedded into the system software in the computer, which is interfaced to the computer. When the instructions are given using the computer, this is transformed into real time application using the robot. All the AI based algorithms are written and saved in the control software, which acts as the intelligent task planning system.Keywords: AI, Robot, Task Planner, RT, Algorithm, Specs, Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620226 Comparison of Evolutionary Algorithms and their Hybrids Applied to MarioAI
Authors: Hidehiko Okada, Yuki Fujii
Abstract:
Researchers have been applying artificial/ computational intelligence (AI/CI) methods to computer games. In this research field, further researchesare required to compare AI/CI methods with respect to each game application. In thispaper, we report our experimental result on the comparison of evolution strategy, genetic algorithm and their hybrids, applied to evolving controller agents for MarioAI. GA revealed its advantage in our experiment, whereas the expected ability of ES in exploiting (fine-tuning) solutions was not clearly observed. The blend crossover operator and the mutation operator of GA might contribute well to explore the vast search space.
Keywords: Evolutionary algorithm, autonomous game controller agent, neuroevolutions, MarioAI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723225 Comparative Review of Modulation Techniques for Harmonic Minimization in Multilevel Inverter
Authors: M. Suresh Kumar, K. Ramani
Abstract:
This paper proposed the comparison made between Multi-Carrier Pulse Width Modulation, Sinusoidal Pulse Width Modulation and Selective Harmonic Elimination Pulse Width Modulation technique for minimization of Total Harmonic Distortion in Cascaded H-Bridge Multi-Level Inverter. In Multicarrier Pulse Width Modulation method by using Alternate Position of Disposition scheme for switching pulse generation to Multi-Level Inverter. Another carrier based approach; Sinusoidal Pulse Width Modulation method is also implemented to define the switching pulse generation system in the multi-level inverter. In Selective Harmonic Elimination method using Genetic Algorithm and Particle Swarm Optimization algorithm for define the required switching angles to eliminate low order harmonics from the inverter output voltage waveform and reduce the total harmonic distortion value. So, the results validate that the Selective Harmonic Elimination Pulse Width Modulation method does capably eliminate a great number of precise harmonics and minimize the Total Harmonic Distortion value in output voltage waveform in compared with Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method. In this paper, comparison of simulation results shows that the Selective Harmonic Elimination method can attain optimal harmonic minimization solution better than Multi-Carrier Pulse Width Modulation method, Sinusoidal Pulse Width Modulation method.Keywords: Multi-level inverter, Selective Harmonic Elimination Pulse Width Modulation, Multi-Carrier Pulse Width Modulation, Total Harmonic Distortion, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2976224 Two Individual Genetic Algorithm
Authors: Younis R. Elhaddad, Aiman S.Gannous
Abstract:
The particular interests of this paper is to explore if the simple Genetic Algorithms (GA) starts with population of only two individuals and applying different crossover technique over these parents to produced 104 children, each one has different attributes inherited from their parents; is better than starting with population of 100 individuals; and using only one type crossover (order crossover OX). For this reason we implement GA with 52 different crossover techniques; each one produce two children; which means 104 different children will be produced and this may discover more search space, also we implement classic GA with order crossover and many experiments were done over 3 Travel Salesman Problem (TSP) to find out which method is better, and according to the results we can say that GA with Multi-crossovers is much better.
Keywords: Artificial intelligence, genetic algorithm, order crossover, travel salesman problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416223 Analysis of Histogram Asymmetry for Waste Recognition
Authors: Janusz Bobulski, Kamila Pasternak
Abstract:
Despite many years of effort and research, the problem of waste management is still current. There is a lack of fast and effective algorithms for classifying individual waste fractions. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.
Keywords: Computer vision, environmental protection, image processing, waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 313222 Memory and Higher Cognition
Authors: A. Páchová
Abstract:
Working memory (WM) can be defined as the system which actively holds information in the mind to do tasks in spite of the distraction. Contrary, short-term memory (STM) is a system that represents the capacity for the active storing of information without distraction. There has been accumulating evidence that these types of memory are related to higher cognition (HC). The aim of this study was to verify the relationship between HC and memory (visual STM and WM, auditory STM and WM). 59 primary school children were tested by intelligence test, mathematical tasks (HC) and memory subtests. We have shown that visual but not auditory memory is a significant predictor of higher cognition. The relevance of these results are discussed.Keywords: higher cognition, long-term memory, short-term memory, working memory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551221 Design of an Intelligent Tutor using a Multiagent Approach
Authors: Kamel Khoualdi, Radia Benghezal
Abstract:
Research in distributed artificial intelligence and multiagent systems consider how a set of distributed entities can interact and coordinate their actions in order to solve a given problem. In this paper an overview of this concept and its evolution is presented particularly its application in the design of intelligent tutoring systems. An intelligent tutor based on the concept of agent and centered specifically on the design of a pedagogue agent is illustrated. Our work has two goals: the first one concerns the architecture aspect and the design of a tutor using multiagent approach. The second one deals particularly with the design of a part of a tutor system: the pedagogue agent.Keywords: Intelligent tutoring systems, Multiagent systems, Pedagogue agent, Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491220 The AI Application and Talent Demand of Taiwan High-Tech Manufacturing Industry
Authors: Shi-Yu Lu, Chung-Han Yeh, Li-Ping Chen, Yu-Cheng Chang
Abstract:
This paper uses both quantitative and qualitative approaches to survey the current status of AI-related applications and the structure of key AI jobs in Taiwan's high-tech manufacturing industry, as well as the demand for professional AI talents, skills, and training. The result shows that AI applications and talent demand vary from different industries in many aspects, including technologies used, talent structure, and training methods. This paper serves as a reference for the government to establish appropriate talent training programs, and to reduce the demand gap for professional AI talents in Taiwan manufacturers.
Keywords: Artificial intelligence, manufacturing, talent, training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 394219 Case Based Reasoning Technology for Medical Diagnosis
Authors: Abdel-Badeeh M. Salem
Abstract:
Case based reasoning (CBR) methodology presents a foundation for a new technology of building intelligent computeraided diagnoses systems. This Technology directly addresses the problems found in the traditional Artificial Intelligence (AI) techniques, e.g. the problems of knowledge acquisition, remembering, robust and maintenance. This paper discusses the CBR methodology, the research issues and technical aspects of implementing intelligent medical diagnoses systems. Successful applications in cancer and heart diseases developed by Medical Informatics Research Group at Ain Shams University are also discussed.
Keywords: Medical Informatics, Computer-Aided MedicalDiagnoses, AI in Medicine, Case-Based Reasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943218 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594217 Enhancement Approaches for Supporting Default Hierarchies Formation for Robot Behaviors
Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam
Abstract:
Robotic system is an important area in artificial intelligence that aims at developing the performance techniques of the robot and making it more efficient and more effective in choosing its correct behavior. In this paper the distributed learning classifier system is used for designing a simulated control system for robot to perform complex behaviors. A set of enhanced approaches that support default hierarchies formation is suggested and compared with each other in order to make the simulated robot more effective in mapping the input to the correct output behavior.
Keywords: Learning Classifier System, Default Hierarchies, Robot Behaviors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425216 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics
Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo
Abstract:
A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.
Keywords: Behavioural biometric, Face biometric, Neural network, Physical biometric, Signature biometric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684215 B-VIS Service-oriented Middleware for RFID Sensor Network
Authors: Wiroon Sriborrirux, Sorakrai Kraipui, Nakorn Indra-Payoong
Abstract:
One of the most importance of intelligence in-car and roadside systems is the cooperative vehicle-infrastructure system. In Thailand, ITS technologies are rapidly growing and real-time vehicle information is considerably needed for ITS applications; for example, vehicle fleet tracking and control and road traffic monitoring systems. This paper defines the communication protocols and software design for middleware components of B-VIS (Burapha Vehicle-Infrastructure System). The proposed B-VIS middleware architecture serves the needs of a distributed RFID sensor network and simplifies some intricate details of several communication standards.Keywords: Middleware, RFID sensor network, Cooperativevehicle-infrastructure system, Enterprise Java Bean.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537214 Application of Computational Intelligence for Sensor Fault Detection and Isolation
Authors: A. Jabbari, R. Jedermann, W. Lang
Abstract:
The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.
Keywords: Fault detection and Isolation, Neural network, Temperature measurement, measurement approximation and classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071213 Why Traditional Technology Acceptance Models Won't Work for Future Information Technologies?
Authors: Carsten Röcker
Abstract:
This paper illustrates why existing technology acceptance models are only of limited use for predicting and explaining the adoption of future information and communication technologies. It starts with a general overview over technology adoption processes, and presents several theories for the acceptance as well as adoption of traditional information technologies. This is followed by an overview over the recent developments in the area of information and communication technologies. Based on the arguments elaborated in these sections, it is shown why the factors used to predict adoption in existing systems, will not be sufficient for explaining the adoption of future information and communication technologies.Keywords: Technology Diffusion, Technology AcceptanceModels, Ambient Intelligence, Ubiquitous and Pervasive Computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426212 Auto-Parking System via Intelligent Computation Intelligence
Authors: Y. J. Huang, C. H. Chang
Abstract:
In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.
Keywords: Auto-parking system, Fuzzy control, Neural network, Robust
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860211 DJess A Knowledge-Sharing Middleware to Deploy Distributed Inference Systems
Authors: Federico Cabitza, Bernardo Dal Seno
Abstract:
In this paper DJess is presented, a novel distributed production system that provides an infrastructure for factual and procedural knowledge sharing. DJess is a Java package that provides programmers with a lightweight middleware by which inference systems implemented in Jess and running on different nodes of a network can communicate. Communication and coordination among inference systems (agents) is achieved through the ability of each agent to transparently and asynchronously reason on inferred knowledge (facts) that might be collected and asserted by other agents on the basis of inference code (rules) that might be either local or transmitted by any node to any other node.Keywords: Knowledge-Based Systems, Expert Systems, Distributed Inference Systems, Parallel Production Systems, Ambient Intelligence, Mobile Agents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796210 Design Method for Knowledge Base Systems in Education Using COKB-ONT
Authors: Nhon Do, Tuyen Trong Tran, Phan Hoai Truong
Abstract:
Nowadays e-Learning is more popular, in Vietnam especially. In e-learning, materials for studying are very important. It is necessary to design the knowledge base systems and expert systems which support for searching, querying, solving of problems. The ontology, which was called Computational Object Knowledge Base Ontology (COB-ONT), is a useful tool for designing knowledge base systems in practice. In this paper, a design method for knowledge base systems in education using COKB-ONT will be presented. We also present the design of a knowledge base system that supports studying knowledge and solving problems in higher mathematics.Keywords: artificial intelligence, knowledge base systems, ontology, educational software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043209 Drowsiness Warning System Using Artificial Intelligence
Authors: Nidhi Sharma, V. K. Banga
Abstract:
Nowadays, driving support systems, such as car navigation systems, are getting common, and they support drivers in several aspects. It is important for driving support systems to detect status of driver's consciousness. Particularly, detecting driver's drowsiness could prevent drivers from collisions caused by drowsy driving. In this paper, we discuss the various artificial detection methods for detecting driver's drowsiness processing technique. This system is based on facial images analysis for warning the driver of drowsiness or in attention to prevent traffic accidents.Keywords: Neuro-Fuzzy Model, Halstead Model, Walston-FelixModel, Bailey-Basili Model, Doty Model, GA Based Model, GeneticAlgorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3712208 IntelligentLogger: A Heavy-Duty Vehicles Fleet Management System Based on IoT and Smart Prediction Techniques
Authors: D. Goustouridis, A. Sideris, I. Sdrolias, G. Loizos, N.-Alexander Tatlas, S. M. Potirakis
Abstract:
Both daily and long-term management of a heavy-duty vehicles and construction machinery fleet is an extremely complicated and hard to solve issue. This is mainly due to the diversity of the fleet vehicles – machinery, which concerns not only the vehicle types, but also their age/efficiency, as well as the fleet volume, which is often of the order of hundreds or even thousands of vehicles/machineries. In the present paper we present “InteligentLogger”, a holistic heavy-duty fleet management system covering a wide range of diverse fleet vehicles. This is based on specifically designed hardware and software for the automated vehicle health status and operational cost monitoring, for smart maintenance. InteligentLogger is characterized by high adaptability that permits to be tailored to practically any heavy-duty vehicle/machinery (of different technologies -modern or legacy- and of dissimilar uses). Contrary to conventional logistic systems, which are characterized by raised operational costs and often errors, InteligentLogger provides a cost-effective and reliable integrated solution for the e-management and e-maintenance of the fleet members. The InteligentLogger system offers the following unique features that guarantee successful heavy-duty vehicles/machineries fleet management: (a) Recording and storage of operating data of motorized construction machinery, in a reliable way and in real time, using specifically designed Internet of Things (IoT) sensor nodes that communicate through the available network infrastructures, e.g., 3G/LTE; (b) Use on any machine, regardless of its age, in a universal way; (c) Flexibility and complete customization both in terms of data collection, integration with 3rd party systems, as well as in terms of processing and drawing conclusions; (d) Validation, error reporting & correction, as well as update of the system’s database; (e) Artificial intelligence (AI) software, for processing information in real time, identifying out-of-normal behavior and generating alerts; (f) A MicroStrategy based enterprise BI, for modeling information and producing reports, dashboards, and alerts focusing on vehicles– machinery optimal usage, as well as maintenance and scraping policies; (g) Modular structure that allows low implementation costs in the basic fully functional version, but offers scalability without requiring a complete system upgrade.
Keywords: E-maintenance, predictive maintenance, IoT sensor nodes, cost optimization, artificial intelligence, heavy-duty vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771207 Modeling of the Process Parameters using Soft Computing Techniques
Authors: Miodrag T. Manić, Dejan I. Tanikić, Miloš S. Stojković, Dalibor M. ðenadić
Abstract:
The design of technological procedures for manufacturing certain products demands the definition and optimization of technological process parameters. Their determination depends on the model of the process itself and its complexity. Certain processes do not have an adequate mathematical model, thus they are modeled using heuristic methods. First part of this paper presents a state of the art of using soft computing techniques in manufacturing processes from the perspective of applicability in modern CAx systems. Methods of artificial intelligence which can be used for this purpose are analyzed. The second part of this paper shows some of the developed models of certain processes, as well as their applicability in the actual calculation of parameters of some technological processes within the design system from the viewpoint of productivity.Keywords: fuzzy logic, manufacturing, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910206 Kazakhstani Humanism: Challenges and Prospects
Authors: Samat Turganbekov, Zhakan Mol
Abstract:
This article examines the emergence and development of the Kazakhstan species of humanism. The biggest challenge for Kazakhstan in terms of humanism is connected with advocating human values in parallel to promoting national interests; preserving the continuity of traditions in various spheres of life, business and culture. This should be a common goal for the entire society, the main direction for a national intelligence, and a platform for the state policy. An idea worth considering is a formation of national humanist tradition model; the challenges are adapting people to live in the context of new industrial and innovative economic conditions, keeping the balance during intensive economic development of the country, and ensuring social harmony in the society.Keywords: Kazakh humanism, humanist tradition, national culture, spiritual and moral priority, national interest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561205 Creating or Destroying Objects Plan in the Graphplan Framework
Authors: Wen-xiang Gu, Zeng-yu Cai, Xin-mei Zhang, Gui-dong Jiang
Abstract:
At present, intelligent planning in the Graphplan framework is a focus of artificial intelligence. While the Creating or Destroying Objects Planning (CDOP) is one unsolved problem of this field, one of the difficulties, too. In this paper, we study this planning problem and bring forward the idea of transforming objects to propositions, based on which we offer an algorithm, Creating or Destroying Objects in the Graphplan framework (CDOGP). Compared to Graphplan, the new algorithm can solve not only the entire problems that Graphplan do, but also a part of CDOP. It is for the first time that we introduce the idea of object-proposition, and we emphasize the discussion on the representations of creating or destroying objects operator and an algorithm in the Graphplan framework. In addition, we analyze the complexity of this algorithm.
Keywords: Graphplan, object_proposition, Creating or destroying objects, CDOGP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241204 Knowledge-Based Approach and System for Processof School/University Orientation
Authors: Khababa Abdallah, Touahria Mohamed, Frécon Louis
Abstract:
The school / university orientation interests a broad and often badly informed public. Technically, it is an important multicriterion decision problem, which supposes the combination of much academic professional and/or lawful knowledge, which in turn justifies software resorting to the techniques of Artificial Intelligence. CORUS is an expert system of the "Conseil et ORientation Universitaire et Scolaire", based on a knowledge representation language (KRL) with rules and objects, called/ known as Ibn Rochd. CORUS was developed thanks to DéGSE, a workshop of cognitive engineering which supports this LRC. CORUS works out many acceptable solutions for the case considered, and retains the most satisfactory among them. Several versions of CORUS have extended its services gradually.Keywords: Kknowledge Engineering, Multicriterion Decision, Knowledge-Based Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717203 Emerging Technology for 6G Networks
Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily
Abstract:
Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.
Keywords: 6G Networks, artificial intelligence, AI, Li-Fi technology, terahertz communication, visible light communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216202 Knowledge Management and e-Learning –An Agent-Based Approach
Authors: Teodora Bakardjieva, Galya Gercheva
Abstract:
In this paper an open agent-based modular framework for personalized and adaptive curriculum generation in e-learning environment is proposed. Agent-based approaches offer several potential advantages over alternative approaches. Agent-based systems exhibit high levels of flexibility and robustness in dynamic or unpredictable environments by virtue of their intrinsic autonomy. The presented framework enables integration of different types of expert agents, various kinds of learning objects and user modeling techniques. It creates possibilities for adaptive e-learning process. The KM e-learning system is in a process of implementation in Varna Free University and will be used for supporting the educational process at the University.Keywords: agents, e-Learning, knowledge management, knowledge sharing, artificial intelligence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166201 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: Artificial neural network, back-propagation, tide data, training algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713200 A Web Pages Automatic Filtering System
Authors: O. Nouali, A. Saidi, H. Chahrat, A. Krinah, B. Toursel
Abstract:
This article describes a Web pages automatic filtering system. It is an open and dynamic system based on multi agents architecture. This system is built up by a set of agents having each a quite precise filtering task of to carry out (filtering process broken up into several elementary treatments working each one a partial solution). New criteria can be added to the system without stopping its execution or modifying its environment. We want to show applicability and adaptability of the multi-agents approach to the networks information automatic filtering. In practice, most of existing filtering systems are based on modular conception approaches which are limited to centralized applications which role is to resolve static data flow problems. Web pages filtering systems are characterized by a data flow which varies dynamically.Keywords: Agent, Distributed Artificial Intelligence, Multiagents System, Web pages filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377199 A Simulator for Robot Navigation Algorithms
Authors: Michael A. Folcik, Bijan Karimi
Abstract:
A robot simulator was developed to measure and investigate the performance of a robot navigation system based on the relative position of the robot with respect to random obstacles in any two dimensional environment. The presented simulator focuses on investigating the ability of a fuzzy-neural system for object avoidance. A navigation algorithm is proposed and used to allow random navigation of a robot among obstacles when the robot faces an obstacle in the environment. The main features of this simulator can be used for evaluating the performance of any system that can provide the position of the robot with respect to obstacles in the environment. This allows a robot developer to investigate and analyze the performance of a robot without implementing the physical robot.Keywords: Applications of Fuzzy Logic and Neural Networksin Robotics, Artificial Intelligence, Embedded Systems, MobileRobots, Robot Navigation, Robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758198 Impact of Faults in Different Software Systems: A Survey
Authors: Neeraj Mohan, Parvinder S. Sandhu, Hardeep Singh
Abstract:
Software maintenance is extremely important activity in software development life cycle. It involves a lot of human efforts, cost and time. Software maintenance may be further subdivided into different activities such as fault prediction, fault detection, fault prevention, fault correction etc. This topic has gained substantial attention due to sophisticated and complex applications, commercial hardware, clustered architecture and artificial intelligence. In this paper we surveyed the work done in the field of software maintenance. Software fault prediction has been studied in context of fault prone modules, self healing systems, developer information, maintenance models etc. Still a lot of things like modeling and weightage of impact of different kind of faults in the various types of software systems need to be explored in the field of fault severity.
Keywords: Fault prediction, Software Maintenance, Automated Fault Prediction, and Failure Mode Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079