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Abstract— At present, intelligent planning in the Graphplan 

framework is a focus of artificial intelligence. While the Creating or 

Destroying Objects Planning (CDOP) is one unsolved problem of this 

field, one of the difficulties, too. In this paper, we study this planning 

problem and bring forward the idea of transforming objects to 

propositions, based on which we offer an algorithm, Creating or 

Destroying Objects in the Graphplan framework (CDOGP). 

Compared to Graphplan, the new algorithm can solve not only the 

entire problems that Graphplan do, but also a part of CDOP. It is for 

the first time that we introduce the idea of object-proposition, and we 

emphasize the discussion on the representations of creating or 

destroying objects operator and an algorithm in the Graphplan 

framework. In addition, we analyze the complexity of this algorithm. 

Keywords—Graphplan, object_proposition, Creating or 

destroying objects, CDOGP.

I. INTRODUCTION

The intelligent planning is an important method of artificial 

intelligence research and has been applied to many fields. 

Specifically, the Graphplan through planning graph analysis 

[1],[2], which made revolutionary progress in the intelligent 

planning, arouse extensive concerns and study. Furthermore, 

people have obtained many achievements from it, which 

include conditional effects in Graphplan [3], probabilistic 

planning in the Graphplan framework[4], uncertain 

planning[5] and goal recognition through graph analysis 

[6],and so on. 

However, so far CDOP brought forward by Blum and Furst 

hasn’t been solved. There are a great many of such planning 

problems in the real world. With the development of 

intelligence planning in the Graphplan framework, these 

problems get more serious, and have became a bottleneck of 

the progress of the AI planning. In this paper, we thoroughly 

study this problem and introduce a method to solve it in the 

Graphplan framework, which can solve the CDOP problem 

through making a few changes to the Graphplan. Hence, we 

can apply the results of Graphplan to the CDOP easily.

II. DEFINITIONS AND NOTATIONS

In this section, we give some notations relevant to our 

algorithm.  
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McDermott and James Hemdeler think a plan is devising the 

sequence of actions for an agent [9] .We generally think a plan

is a set of actions that will achieve the goals of a problem.  

A planning problem consists of:

(1) a STRIPS-like domain(a set of operators), 

(2) a set of objects, 

(3) a set of propositions(literals) called the initial conditions, 

(4) a set of problem goals which are propositions that are 

required to be true at the end of a plan.

No-op: a special kind of action that does nothing to a 

proposition at time step i, whose add effects is the same 

proposition as its preconditions.  

Planning graph: a planning graph is a directed, leveled 

graph with two kinds of nodes and three kinds of edges. The 

two kinds of node are proposition nodes and action   nodes.

The action nodes express common action appearing at some 

time step, and proposition nodes express common proposition 

appearing at some time step. The levels alternate between 

proposition-level containing proposition nodes and 

action-level containing action nodes. 

III. THE CLASSIFICATIONS OF CDOP 

Here, we divide the CDOP into two types: 

(1). The attributes of new objects created in planning are 

unpredictable. 

Before planning starting, we can’t know about what kind of 

objects will be created, or the attributes of new objects in some 

planning problems. For example, an operator is to mix two 

kinds of chemical liquids together. In the planning, a new 

substance will be produced, but we know nothing about it 

before planning starting. 

(2). The attributes of new objects created in a planning are 

predictable 

That is to say, before planning starting, we know about what 

kind of objects will be created, and the attributes of new 

objects in some planning problems. In fact, in the operator set 

there exists this kind of operators, the type of whose 

parameters will not exist in the initial object set. For example, 

in a transportation planning, given a train head and a train tail, 

we can know that it is possible to create a train by linking them 

together. Moreover, we can predict the train can be loaded with 

cargo and move before planning starting. 

Because the majority of planning problems in the reality are 

domain-specific, we can know what kind of objects will be 

created in a planning, which belongs to the second type stated 

above. We primarily discuss it in this paper. 

Creating or Destroying Objects Plan in the 

Graphplan Framework  
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IV. THE REPRESENTATION OF THE OPERATOR IN THE 

CDOGP 

A. The type and representation of the operator 

We divide the operators into two types: common operator 

and creating or destroying objects (CDO) operator. 

Definition 1: An operator creating or destroying objects is 

called creating or destroying objects (CDO) operator. The 

action instantiated from it is called CDO action. 

Definition 2: The operator other than CDO operators is 

called common operator. The action instantiated from them is 

called common action. 

Representations of operators are demonstrated as follows. 

Common operator:  

Operator { 

: The set of parameter {…} 

: The set of precondition {…} 

: The set of effect {the effect propositions} 

}.

CDO action: 

Operator { 

: The set of parameter {{ the set of common parameter},{ 

the set of decisive parameter } } 

: The set of precondition { …} 

: The set of effect {{the set of object added},{ {{ the set of 

object destroyed },{ the effect propositions }} 

}.

B. The restrictions to creating objects operator 

(1). In general, a CDO operator destroys some objects when 

creating new objects, and a new object can be known what 

kind of it is according to some parameters of creating it. 

Therefore, we assume that the new objects can be determined 

by some parameters in all the creating objects actions. And we 

call these parameters decisive parameters. For instance, in a 

planning a creating objects operator is instantiated twice, and 

the decisive parameters are all the same, so we can make sure 

that the objects created by the two actions are exactly the same. 

(2). The restrictions to the initial operator set 

Assume that all the creating objects operators are in the set 

A (A={op1, op2, op3, …op n}). We restrict the set A as 

follows: 

The type of any parameter of an operator mustn’t be the 

same as that of the object it creates, we call it avoiding the 

recursion call of creating objects operator.  

In set A, there doesn’t exist an operator sequence, op i 1, op i 

2, op i 3, …op i m. The type of a new object created by op i j is a 

decisive parameter of op i j+1, and the type of a new object 

created by op i m is a decisive parameter of op i 1. We call it 

avoiding the recursion of creating objects operator through 

loop call. 

V. THE CONCEPT OF TRANSFORMING OBJECT TO PROPOSITION

In the CDOP, some actions can create new objects or 

destroy existing objects. Therefore, the number of objects will 

change during the planning. That is, the object is dynamic. In 

addition, in the process of a planning, a certain operator 

possibly destroys some objects when creating new objects. 

Hence, the interaction between objects is also one feature of 

the objects.  

The propositions in Graphplan have the same features as the 

objects in the CDOP analyzed above, and the sophisticated 

methods to handle propositions are available. Therefore, we 

can apply them to objects. This is just the source of the idea of 

transforming object to proposition. The method is: we use a 

proposition to indicate that an object exists at some time step, 

and the usual form is alive+ “object name”. For example, 

alive C indicates that an object C exists at some time step. So 

we can divide the proposition into two types: common 

proposition and object proposition.

Definition 3: the object-proposition is the proposition to 

express whether an object exists at some time step. 

Definition 4: the rest of the proposition is the common 

proposition, which usually expresses the attribute or the state 

of the object.  

Simple as the idea is, we will find out its great advantages 

later. Because of the introduction of it, we can treat object as 

proposition and handle their dynamic change and mutual 

interactions conveniently. Furthermore, we can apply the 

results of Graphplan to CDOGP easily without many changes. 

VI. CDOGP: CREATING OR DESTROYING OBJECTS IN THE 

GRAPHPLAN FRAMEWORK

In this paper, we try to solve the planning problems 

involving finite objects and new objects predictable, which 

belong to the second type of CDOP problem in section 3. The 

main thought is making the Graphplan handle CDOP problems 

through appropriate changes. 

A. The description of CDOP problem  

The CDOP problem, similar to the Graphplan, consists of: 

(1) A set of operators, including the common operator and 

CDO operator; 

(2) A set of objects; 

(3) A set of proposition called the initial condition; 

(4) A set of proposition called goals; 

B. The graph of CDOGP 

The planning graph of CDOGP is similar with the 

Graphplan’s, also a directed, leveled graph with two kinds of 

nodes which are proposition nodes and action nodes and three 

kinds of edges. The action nodes represent common actions or 

CDO actions, and the proposition nodes represent common 

propositions or object propositions. The levels alternate 

between proposition levels containing proposition nodes and 

action levels containing action nodes. The three edges 

represent relations between actions and propositions. Similar 

with the Graphplan, The precondition edges are to connect the 

actions to their preconditions in the previous proposition-level, 

and the add edges are to connect the actions to their add effects 

in the next proposition level including common propositions 

and object propositions. Moreover, the delete edges are to 

connect the actions to their delete effects in the next 

proposition level including common propositions and 
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object-propositions. 

C. Exclusion relations among planning graph nodes of 

CDOGP  

1) Exclusion relations among objects 

Definition 5: At proposition level t, two objects of A and B 

are mutually exclusive in a planning graph, if no valid plan 

could possibly contain both A and B at that proposition-level.  

The method of judging exclusion relations among objects: 

If the actions creating A and all the actions creating B that 

are marked as mutually exclusive of each other in the previous 

action-level, A and B will be mutually exclusive. 

2) Exclusion relations among action nodes 

Definition 6: two actions A and B at action-level t are 

mutually exclusive if no valid plan could possibly contain both 

actions A and B at that action-level.  

The method of judging exclusion relations among actions: 

(1) If one precondition of action A and one precondition of 

action B that are marked as mutually exclusive in the 

previous proposition-level; 

(2) If an action deletes a precondition or an add effect of 

another; 

(3) If an action destroys an object, whose name exists at the 

preconditions or add effects of another. 

Under any circumstance above, two actions will be marked 

mutually exclusive at the current level. 

3) Exclusion relations among propositions 

Definition 7: At proposition-level t, two propositions of P 

and Q are mutually exclusive in a planning graph if no valid 

plan could possibly contains both P and Q at that 

proposition-level. 

The method of judging exclusion relation among 

proposition nodes: 

(1) If any action achieving P and any action achieving Q are 

marked as mutually exclusive of each other in the previous 

action-level; 

(2) If two object-propositions are mutually exclusive at the 

current level, and the two objects’ name appears at P and Q 

respectively; 

Under either of circumstances above, two propositions will 

be marked mutually exclusive. 

D. The algorithm of expanding the planning graph 

(1). Transforming the objects in the initial state into 

object-propositions. The algorithm starts with a planning graph 

that only has a single proposition level containing the initial 

conditions and object-propositions of initial objects. Guarantee 

that no pair of propositions is mutually exclusive. 

(2). We suppose that the proposition-level n has been 

obtained completely. If it contains all the goals and no pair of 

the propositions in the goal set is exclusive, the algorithm turns 

to searching valid plan, else if the proposition level n is exactly 

the same as the proposition level n-1 and the same exclusion 

relations, returns no valid plan, else turns to the next step. 

(3). For each operator and each way of instantiating 

preconditions of that operator to propositions in the previous 

level, it inserts an action node if no pair of its preconditions are 

marked as mutually exclusive.  Insert all the no-op actions 

and the precondition edges. Create a generic proposition level , 

add all the effects of the actions in the previous level, and 

transform the new objects created by the action in previous 

level to object-propositions. Add the object-propositions that 

are not in current proposition-level to the current 

proposition-level. Connect them to their preconditions with 

add edges and delete edges. Last, the algorithm creates an 

“acions_that_I_am_exclusive_of” list for each action in level n 

and a “propositions_that_I_am_exclusive_of” list for each 

proposition in level n+1. 

E. The algorithm of searching for a valid plan 

(1). For each subgoal at time step t, select some actions at 

time step t-1 achieving these goals that are not exclusive of any 

action that has been selected, and continue recursively with the 

next goals at time step t-1. If the recursive call returns failure, 

the algorithm tries a different action achieving the current goal 

and so forth. It returns failure once all the actions have been 

tried. Upon finishing with all the goals at time step t, the 

preconditions of the selected actions make up the new goal set 

at time step t-1, and then it continues this procedure at time 

step t-1. 

(2). If the goals at the current level are a subset of the initial 

conditions, we get the valid plan as the actions been selected. If 

it reruns failure at the previous level, it backs up right way. If it 

still returns failure at the last level t, there is no valid plan in t

steps, then it turns to then expanding planning graph algorithm. 

It is similar with the Graphplan[2]. 

F. Terminating on unsolvable problem  

According to the algorithm described in section 7, it is 

obvious that the number of propositions is finite in any 

proposition-level. If the propositions in proposition-level n are 

exactly same as the propositions in proposition-level n-1, and 

they have the same exclusion relations. We call the planning 

graph “level off ”. If there is no valid plan at time step n, the 

problem is unsolvable. Please read the reference [2] for the 

detailed proof. 

VII. THE ANALYSIS OF CDOGP 

A. Space needed 

Theorem 1: Consider a planning problem with n objects, p 

propositions in the initial conditions, and m operators each 

having a constant number of formal parameters. Let L be the 

sum of the number of the objects and the propositions added by 

any operators. The new objects created in planning are no 

more than N. Then, the size of a t-level planning graph created 

by CDOGP, is polynomial in n, p, m, L, t, and N. 

Proof. Let k be the largest number of formal parameters in 

any operator. Since there are n objects in the initial state, and 

the new objects created in a planning are no more than N. The 

maximum number of different common propositions and 

object propositions that can be created by instantiating an 

operator is O (L(n+N)k ). Therefore, the maximum number of 

nodes in any proposition-level of the planning graph is O (p + 

L (n+N)k). Since any operator can be instantiated in at most O 

((n+N)k) distinct ways. The maximum number of nodes in any 
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action level of the panning graph is O (m (n+N) k). Thus, the 

total size of the planning graph is polynomial in n, p, m, L, t, 

and N, since k is constant. 

B. Time needed 

Intuitively, with the introduction of object proposition, our 

algorithm is similar with the Graphplan’s. Therefore, the time 

needed by our algorithm is finite, too. 

Theorem 2: The time needed to create the graph is 

polynomial in the number of nodes of the planning graph. 

Proof. The times needed to create a new action and 

proposition level of planning graph can be broken down into 

(a) The time to instantiate the operator s in all possible ways to 

preconditions in the previous proposition level, (b) the time to 

determine mutual exclusion relations between actions, and (c) 

the time to determine the mutual exclusion relations in the next 

level of propositions. It is obvious that the time is polynomial 

in the number of nodes in the current level of the graph. So the 

time needed to create the graph is polynomial in the number of 

nodes of the planning graph.. 

C. Limitations 

The purpose of this paper is to introduce a new method of 

solving the CDOP problem. We omit some details and don’t 

utilize some optimizing techniques such as goal-driven 

planning. Therefore, our algorithm is not very efficient. 

Besides, we make some restrictions to the operators of our 

algorithm; as a result, some planning problems can’t be solved. 

However, it is not serious. Because we aim at extending and 

improving Graphplan, and the less we make changes to the 

Graphplan, the easier we apply the existing results of 

Graphplan to the CDOP problems. 

VIII. CONCLUSION

In this paper, we do much study on the CDOP problems and 

thorough analysis. We divide this planning problem into two 

types and give the concept of transforming object to 

proposition, through which we transform the reclusion 

relations among objects to propositions’ successfully. We also 

offer an algorithm, CDOGP, in the Graphplan framework. 

Compared to the Graphplan, our algorithm can solve not only 

all the problems that Graphplan can do, but also part of the 

CDOP problems. As our work is still in the Graphplan 

framework, we can apply the results of Graphplan such as 

conditional effects, probabilistic planning, to CDOGP 

conveniently. 
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