
Wen-xiang Gu, Zeng-yu Cai, Xin-mei Zhang, Gui-dong Jiang

Abstract— At present, intelligent planning in the Graphplan

framework is a focus of artificial intelligence. While the Creating or

Destroying Objects Planning (CDOP) is one unsolved problem of this

field, one of the difficulties, too. In this paper, we study this planning

problem and bring forward the idea of transforming objects to

propositions, based on which we offer an algorithm, Creating or

Destroying Objects in the Graphplan framework (CDOGP).

Compared to Graphplan, the new algorithm can solve not only the

entire problems that Graphplan do, but also a part of CDOP. It is for

the first time that we introduce the idea of object-proposition, and we

emphasize the discussion on the representations of creating or

destroying objects operator and an algorithm in the Graphplan

framework. In addition, we analyze the complexity of this algorithm.

Keywords—Graphplan, object_proposition, Creating or

destroying objects, CDOGP.

I. INTRODUCTION

The intelligent planning is an important method of artificial

intelligence research and has been applied to many fields.

Specifically, the Graphplan through planning graph analysis

[1],[2], which made revolutionary progress in the intelligent

planning, arouse extensive concerns and study. Furthermore,

people have obtained many achievements from it, which

include conditional effects in Graphplan [3], probabilistic

planning in the Graphplan framework[4], uncertain

planning[5] and goal recognition through graph analysis

[6],and so on.

However, so far CDOP brought forward by Blum and Furst

hasn’t been solved. There are a great many of such planning

problems in the real world. With the development of

intelligence planning in the Graphplan framework, these

problems get more serious, and have became a bottleneck of

the progress of the AI planning. In this paper, we thoroughly

study this problem and introduce a method to solve it in the

Graphplan framework, which can solve the CDOP problem

through making a few changes to the Graphplan. Hence, we

can apply the results of Graphplan to the CDOP easily.

II. DEFINITIONS AND NOTATIONS

In this section, we give some notations relevant to our

algorithm.

 Manuscript received December 10, 2004.This work described in this paper

was fully supported by the National Nature Science Foundation of China under

grant 60473042.

Wen-xiang Gu is with Department of Computer Science of Northeast

Normal University, Changchun, Jilin, China(corresponding author, e-mail:

gwx@nenu.edu.cn).

Zeng-yu Cai is with Department of Computer Science of Northeast

Normal University, Changchun, Jilin, China(e-mail: caizy767@nenu.edu.cn).

McDermott and James Hemdeler think a plan is devising the

sequence of actions for an agent [9] .We generally think a plan

is a set of actions that will achieve the goals of a problem.

A planning problem consists of:

(1) a STRIPS-like domain(a set of operators),

(2) a set of objects,

(3) a set of propositions(literals) called the initial conditions,

(4) a set of problem goals which are propositions that are

required to be true at the end of a plan.

No-op: a special kind of action that does nothing to a

proposition at time step i, whose add effects is the same

proposition as its preconditions.

Planning graph: a planning graph is a directed, leveled

graph with two kinds of nodes and three kinds of edges. The

two kinds of node are proposition nodes and action nodes.

The action nodes express common action appearing at some

time step, and proposition nodes express common proposition

appearing at some time step. The levels alternate between

proposition-level containing proposition nodes and

action-level containing action nodes.

III. THE CLASSIFICATIONS OF CDOP

Here, we divide the CDOP into two types:

(1). The attributes of new objects created in planning are

unpredictable.

Before planning starting, we can’t know about what kind of

objects will be created, or the attributes of new objects in some

planning problems. For example, an operator is to mix two

kinds of chemical liquids together. In the planning, a new

substance will be produced, but we know nothing about it

before planning starting.

(2). The attributes of new objects created in a planning are

predictable

That is to say, before planning starting, we know about what

kind of objects will be created, and the attributes of new

objects in some planning problems. In fact, in the operator set

there exists this kind of operators, the type of whose

parameters will not exist in the initial object set. For example,

in a transportation planning, given a train head and a train tail,

we can know that it is possible to create a train by linking them

together. Moreover, we can predict the train can be loaded with

cargo and move before planning starting.

Because the majority of planning problems in the reality are

domain-specific, we can know what kind of objects will be

created in a planning, which belongs to the second type stated

above. We primarily discuss it in this paper.

Creating or Destroying Objects Plan in the

Graphplan Framework

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:1, No:4, 2007

94International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
4,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
42

9.
pd

f

IV. THE REPRESENTATION OF THE OPERATOR IN THE

CDOGP

A. The type and representation of the operator

We divide the operators into two types: common operator

and creating or destroying objects (CDO) operator.

Definition 1: An operator creating or destroying objects is

called creating or destroying objects (CDO) operator. The

action instantiated from it is called CDO action.

Definition 2: The operator other than CDO operators is

called common operator. The action instantiated from them is

called common action.

Representations of operators are demonstrated as follows.

Common operator:

Operator {

: The set of parameter {…}

: The set of precondition {…}

: The set of effect {the effect propositions}

}.

CDO action:

Operator {

: The set of parameter {{ the set of common parameter},{

the set of decisive parameter } }

: The set of precondition { …}

: The set of effect {{the set of object added},{ {{ the set of

object destroyed },{ the effect propositions }}

}.

B. The restrictions to creating objects operator

(1). In general, a CDO operator destroys some objects when

creating new objects, and a new object can be known what

kind of it is according to some parameters of creating it.

Therefore, we assume that the new objects can be determined

by some parameters in all the creating objects actions. And we

call these parameters decisive parameters. For instance, in a

planning a creating objects operator is instantiated twice, and

the decisive parameters are all the same, so we can make sure

that the objects created by the two actions are exactly the same.

(2). The restrictions to the initial operator set

Assume that all the creating objects operators are in the set

A (A={op1, op2, op3, …op n}). We restrict the set A as

follows:

The type of any parameter of an operator mustn’t be the

same as that of the object it creates, we call it avoiding the

recursion call of creating objects operator.

In set A, there doesn’t exist an operator sequence, op i 1, op i

2, op i 3, …op i m. The type of a new object created by op i j is a

decisive parameter of op i j+1, and the type of a new object

created by op i m is a decisive parameter of op i 1. We call it

avoiding the recursion of creating objects operator through

loop call.

V. THE CONCEPT OF TRANSFORMING OBJECT TO PROPOSITION

In the CDOP, some actions can create new objects or

destroy existing objects. Therefore, the number of objects will

change during the planning. That is, the object is dynamic. In

addition, in the process of a planning, a certain operator

possibly destroys some objects when creating new objects.

Hence, the interaction between objects is also one feature of

the objects.

The propositions in Graphplan have the same features as the

objects in the CDOP analyzed above, and the sophisticated

methods to handle propositions are available. Therefore, we

can apply them to objects. This is just the source of the idea of

transforming object to proposition. The method is: we use a

proposition to indicate that an object exists at some time step,

and the usual form is alive+ “object name”. For example,

alive C indicates that an object C exists at some time step. So

we can divide the proposition into two types: common

proposition and object proposition.

Definition 3: the object-proposition is the proposition to

express whether an object exists at some time step.

Definition 4: the rest of the proposition is the common

proposition, which usually expresses the attribute or the state

of the object.

Simple as the idea is, we will find out its great advantages

later. Because of the introduction of it, we can treat object as

proposition and handle their dynamic change and mutual

interactions conveniently. Furthermore, we can apply the

results of Graphplan to CDOGP easily without many changes.

VI. CDOGP: CREATING OR DESTROYING OBJECTS IN THE

GRAPHPLAN FRAMEWORK

In this paper, we try to solve the planning problems

involving finite objects and new objects predictable, which

belong to the second type of CDOP problem in section 3. The

main thought is making the Graphplan handle CDOP problems

through appropriate changes.

A. The description of CDOP problem

The CDOP problem, similar to the Graphplan, consists of:

(1) A set of operators, including the common operator and

CDO operator;

(2) A set of objects;

(3) A set of proposition called the initial condition;

(4) A set of proposition called goals;

B. The graph of CDOGP

The planning graph of CDOGP is similar with the

Graphplan’s, also a directed, leveled graph with two kinds of

nodes which are proposition nodes and action nodes and three

kinds of edges. The action nodes represent common actions or

CDO actions, and the proposition nodes represent common

propositions or object propositions. The levels alternate

between proposition levels containing proposition nodes and

action levels containing action nodes. The three edges

represent relations between actions and propositions. Similar

with the Graphplan, The precondition edges are to connect the

actions to their preconditions in the previous proposition-level,

and the add edges are to connect the actions to their add effects

in the next proposition level including common propositions

and object propositions. Moreover, the delete edges are to

connect the actions to their delete effects in the next

proposition level including common propositions and

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:1, No:4, 2007

95International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
4,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
42

9.
pd

f

object-propositions.

C. Exclusion relations among planning graph nodes of

CDOGP

1) Exclusion relations among objects

Definition 5: At proposition level t, two objects of A and B

are mutually exclusive in a planning graph, if no valid plan

could possibly contain both A and B at that proposition-level.

The method of judging exclusion relations among objects:

If the actions creating A and all the actions creating B that

are marked as mutually exclusive of each other in the previous

action-level, A and B will be mutually exclusive.

2) Exclusion relations among action nodes

Definition 6: two actions A and B at action-level t are

mutually exclusive if no valid plan could possibly contain both

actions A and B at that action-level.

The method of judging exclusion relations among actions:

(1) If one precondition of action A and one precondition of

action B that are marked as mutually exclusive in the

previous proposition-level;

(2) If an action deletes a precondition or an add effect of

another;

(3) If an action destroys an object, whose name exists at the

preconditions or add effects of another.

Under any circumstance above, two actions will be marked

mutually exclusive at the current level.

3) Exclusion relations among propositions

Definition 7: At proposition-level t, two propositions of P

and Q are mutually exclusive in a planning graph if no valid

plan could possibly contains both P and Q at that

proposition-level.

The method of judging exclusion relation among

proposition nodes:

(1) If any action achieving P and any action achieving Q are

marked as mutually exclusive of each other in the previous

action-level;

(2) If two object-propositions are mutually exclusive at the

current level, and the two objects’ name appears at P and Q

respectively;

Under either of circumstances above, two propositions will

be marked mutually exclusive.

D. The algorithm of expanding the planning graph

(1). Transforming the objects in the initial state into

object-propositions. The algorithm starts with a planning graph

that only has a single proposition level containing the initial

conditions and object-propositions of initial objects. Guarantee

that no pair of propositions is mutually exclusive.

(2). We suppose that the proposition-level n has been

obtained completely. If it contains all the goals and no pair of

the propositions in the goal set is exclusive, the algorithm turns

to searching valid plan, else if the proposition level n is exactly

the same as the proposition level n-1 and the same exclusion

relations, returns no valid plan, else turns to the next step.

(3). For each operator and each way of instantiating

preconditions of that operator to propositions in the previous

level, it inserts an action node if no pair of its preconditions are

marked as mutually exclusive. Insert all the no-op actions

and the precondition edges. Create a generic proposition level ,

add all the effects of the actions in the previous level, and

transform the new objects created by the action in previous

level to object-propositions. Add the object-propositions that

are not in current proposition-level to the current

proposition-level. Connect them to their preconditions with

add edges and delete edges. Last, the algorithm creates an

“acions_that_I_am_exclusive_of” list for each action in level n

and a “propositions_that_I_am_exclusive_of” list for each

proposition in level n+1.

E. The algorithm of searching for a valid plan

(1). For each subgoal at time step t, select some actions at

time step t-1 achieving these goals that are not exclusive of any

action that has been selected, and continue recursively with the

next goals at time step t-1. If the recursive call returns failure,

the algorithm tries a different action achieving the current goal

and so forth. It returns failure once all the actions have been

tried. Upon finishing with all the goals at time step t, the

preconditions of the selected actions make up the new goal set

at time step t-1, and then it continues this procedure at time

step t-1.

(2). If the goals at the current level are a subset of the initial

conditions, we get the valid plan as the actions been selected. If

it reruns failure at the previous level, it backs up right way. If it

still returns failure at the last level t, there is no valid plan in t

steps, then it turns to then expanding planning graph algorithm.

It is similar with the Graphplan[2].

F. Terminating on unsolvable problem

According to the algorithm described in section 7, it is

obvious that the number of propositions is finite in any

proposition-level. If the propositions in proposition-level n are

exactly same as the propositions in proposition-level n-1, and

they have the same exclusion relations. We call the planning

graph “level off ”. If there is no valid plan at time step n, the

problem is unsolvable. Please read the reference [2] for the

detailed proof.

VII. THE ANALYSIS OF CDOGP

A. Space needed

Theorem 1: Consider a planning problem with n objects, p

propositions in the initial conditions, and m operators each

having a constant number of formal parameters. Let L be the

sum of the number of the objects and the propositions added by

any operators. The new objects created in planning are no

more than N. Then, the size of a t-level planning graph created

by CDOGP, is polynomial in n, p, m, L, t, and N.

Proof. Let k be the largest number of formal parameters in

any operator. Since there are n objects in the initial state, and

the new objects created in a planning are no more than N. The

maximum number of different common propositions and

object propositions that can be created by instantiating an

operator is O (L(n+N)k). Therefore, the maximum number of

nodes in any proposition-level of the planning graph is O (p +

L (n+N)k). Since any operator can be instantiated in at most O

((n+N)k) distinct ways. The maximum number of nodes in any

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:1, No:4, 2007

96International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
4,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
42

9.
pd

f

action level of the panning graph is O (m (n+N) k). Thus, the

total size of the planning graph is polynomial in n, p, m, L, t,

and N, since k is constant.

B. Time needed

Intuitively, with the introduction of object proposition, our

algorithm is similar with the Graphplan’s. Therefore, the time

needed by our algorithm is finite, too.

Theorem 2: The time needed to create the graph is

polynomial in the number of nodes of the planning graph.

Proof. The times needed to create a new action and

proposition level of planning graph can be broken down into

(a) The time to instantiate the operator s in all possible ways to

preconditions in the previous proposition level, (b) the time to

determine mutual exclusion relations between actions, and (c)

the time to determine the mutual exclusion relations in the next

level of propositions. It is obvious that the time is polynomial

in the number of nodes in the current level of the graph. So the

time needed to create the graph is polynomial in the number of

nodes of the planning graph..

C. Limitations

The purpose of this paper is to introduce a new method of

solving the CDOP problem. We omit some details and don’t

utilize some optimizing techniques such as goal-driven

planning. Therefore, our algorithm is not very efficient.

Besides, we make some restrictions to the operators of our

algorithm; as a result, some planning problems can’t be solved.

However, it is not serious. Because we aim at extending and

improving Graphplan, and the less we make changes to the

Graphplan, the easier we apply the existing results of

Graphplan to the CDOP problems.

VIII. CONCLUSION

In this paper, we do much study on the CDOP problems and

thorough analysis. We divide this planning problem into two

types and give the concept of transforming object to

proposition, through which we transform the reclusion

relations among objects to propositions’ successfully. We also

offer an algorithm, CDOGP, in the Graphplan framework.

Compared to the Graphplan, our algorithm can solve not only

all the problems that Graphplan can do, but also part of the

CDOP problems. As our work is still in the Graphplan

framework, we can apply the results of Graphplan such as

conditional effects, probabilistic planning, to CDOGP

conveniently.

REFERENCES

[1] Blum and M. Furst. Fast planning through planning graph analysis. In

Proc. 14th Int. Joint Conf. AI, pages 1636--1642, 1995.

[2] Blum and M. Furst. Fast planning through planning graph analysis. J.

Artificial Intelligence, 90(1--2):281--300, 1997.

[3] Anderson, C. R.Shimith,D.E., and Weld,D.S.(1998).Conditional Effects

in Graphplan. In Simmons, R., Velose, M .and

Shimith,S.(eds.),Proceedings of the 4th International Conference on

Artificial Intelligence Planning Systems
(aips-98),pp.44-53.AAAIPress,melo Park..

[4] Avrim L. Blum and John C. Probabilistic Planning in the Graphplan

Framework. In the 5th European Conference on Planning

(ECP’99).URL: http://www-2.cs.cmu.edu/~jcl/papers/planning/ecp.ps.

[5] D.S.Weld, C.R Anderson, and D.E.Smith. Extending Graphplan to

handle uncertainty and sensing actions. In AAAI98,1998. URL:

http://www.cs.washington.edu/ai/sgp.html

[6] Hong, J ..Graph Construction and Anlysis as a Paradigm for Plan

Recognition, Seventeenth National Conference on Artificial

Intelligence, Austin, Texas, USA, Publisher: AAAI

Press.pp774-779,2000.

[7] R.E. Fikes and N.J. Nilsson, STRIPS: a new approach to the application

of theoren proving to problem solving, Artif. Intell. 2(1971) 189-208.

[8] McDermott D,et al .Planning:What is, What it could be An introduction

to the Special Issue on Planning and Scheduling. Artificial

Intelligence,1995,76:1-16.

[9] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for

modeling time and metric resources. Technical report, University of

Durham, UK, 2001. 61-124.

[10] H. Kautz and B. Selman. Pushing the envelope: Planning,

propositional logic, and stochastic search. In Proc. 13th Nat.

Conf. AI, pages 1194--1201, 1996.

Wen-xiang Gu is with Department of Computer Science of Northeast Normal

University, Changchun, Jilin, China(corresponding author, e-mail:

gwx@nenu.edu.cn). Professor of computer science, school of Computer

Science. 1970-1972 Department of Mathematics of NENU, student;

1972-1993 Department of Mathematics of NENU,

teacher; 1993-date Department of Computer Science of

NENU, professor.

Research Interests: Artificial intelligent planning

method and intelligent user interface.

Projects undertaken: He projects from the Province

Committee of Science and Technology, National Natural

Science Foundation and Science and Technology

Research from Ministry of Education.

Zeng-yu Cai received his bachelor degree in computer

science Northeast Normal University in 2003, China. He is currently in the

school of computer, Northeast Normal University, as a master. Research

Interests: His search interests include artificial intelligent planning method,

automata theory, and intelligent user interface. (e-mail:

caizy767@nenu.edu.cn)

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:1, No:4, 2007

97International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
4,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/4
42

9.
pd

f

