Search results for: particle filters
513 Model Reduction of Linear Systems by Conventional and Evolutionary Techniques
Authors: S. Panda, S. K. Tomar, R. Prasad, C. Ardil
Abstract:
Reduction of Single Input Single Output (SISO) continuous systems into Reduced Order Model (ROM), using a conventional and an evolutionary technique is presented in this paper. In the conventional technique, the mixed advantages of Mihailov stability criterion and continued fraction expansions (CFE) technique is employed where the reduced denominator polynomial is derived using Mihailov stability criterion and the numerator is obtained by matching the quotients of the Cauer second form of Continued fraction expansions. In the evolutionary technique method Particle Swarm Optimization (PSO) is employed to reduce the higher order model. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example.
Keywords: Reduced Order Modeling, Stability, Continued Fraction Expansions, Mihailov Stability Criterion, Particle Swarm Optimization, Integral Squared Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931512 Selection of an Optimum Configuration of Solar PV Array under Partial Shaded Condition Using Particle Swarm Optimization
Authors: R. Ramaprabha
Abstract:
This paper presents an extraction of maximum energy from Solar Photovoltaic Array (SPVA) under partial shaded conditions by optimum selection of array size using Particle Swarm Optimization (PSO) technique. In this paper a detailed study on the output reduction of different SPVA configurations under partial shaded conditions have been carried out. A generalized MATLAB M-code based software model has been used for any required array size, configuration, shading patterns and number of bypass diodes. Comparative study has been carried out on different configurations by testing several shading scenarios. While the number of shading patterns and the rate of change are very low for stationary SPVA but these may be quite large for SPVA mounted on a mobile platforms. This paper presents the suitability of PSO technique to select optimum configuration for mobile arrays by calculating the global peak (GP) of different configurations and to transfer maximum power to the load.
Keywords: Global peak, Mobile PV arrays, Partial shading, optimization, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4241511 Treatment of Low-Grade Iron Ore Using Two Stage Wet High-Intensity Magnetic Separation Technique
Authors: Moses C. Siame, Kazutoshi Haga, Atsushi Shibayama
Abstract:
This study investigates the removal of silica, alumina and phosphorus as impurities from Sanje iron ore using wet high-intensity magnetic separation (WHIMS). Sanje iron ore contains low-grade hematite ore found in Nampundwe area of Zambia from which iron is to be used as the feed in the steelmaking process. The chemical composition analysis using X-ray Florence spectrometer showed that Sanje low-grade ore contains 48.90 mass% of hematite (Fe2O3) with 34.18 mass% as an iron grade. The ore also contains silica (SiO2) and alumina (Al2O3) of 31.10 mass% and 7.65 mass% respectively. The mineralogical analysis using X-ray diffraction spectrometer showed hematite and silica as the major mineral components of the ore while magnetite and alumina exist as minor mineral components. Mineral particle distribution analysis was done using scanning electron microscope with an X-ray energy dispersion spectrometry (SEM-EDS) and images showed that the average mineral size distribution of alumina-silicate gangue particles is in order of 100 μm and exists as iron-bearing interlocked particles. Magnetic separation was done using series L model 4 Magnetic Separator. The effect of various magnetic separation parameters such as magnetic flux density, particle size, and pulp density of the feed was studied during magnetic separation experiments. The ore with average particle size of 25 µm and pulp density of 2.5% was concentrated using pulp flow of 7 L/min. The results showed that 10 T was optimal magnetic flux density which enhanced the recovery of 93.08% of iron with 53.22 mass% grade. The gangue mineral particles containing 12 mass% silica and 3.94 mass% alumna remained in the concentrate, therefore the concentrate was further treated in the second stage WHIMS using the same parameters from the first stage. The second stage process recovered 83.41% of iron with 67.07 mass% grade. Silica was reduced to 2.14 mass% and alumina to 1.30 mass%. Accordingly, phosphorus was also reduced to 0.02 mass%. Therefore, the two stage magnetic separation process was established using these results.
Keywords: Sanje iron ore, magnetic separation, silica, alumina, recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276510 Comparative Study on Swarm Intelligence Techniques for Biclustering of Microarray Gene Expression Data
Authors: R. Balamurugan, A. M. Natarajan, K. Premalatha
Abstract:
Microarray gene expression data play a vital in biological processes, gene regulation and disease mechanism. Biclustering in gene expression data is a subset of the genes indicating consistent patterns under the subset of the conditions. Finding a biclustering is an optimization problem. In recent years, swarm intelligence techniques are popular due to the fact that many real-world problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to find an optimization technique whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. In this paper, the algorithmic concepts of the Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo Search (CS) algorithms have been analyzed for the four benchmark gene expression dataset. The experiment results show that CS outperforms PSO and SFL for 3 datasets and SFL give better performance in one dataset. Also this work determines the biological relevance of the biclusters with Gene Ontology in terms of function, process and component.
Keywords: Particle swarm optimization, Shuffled frog leaping, Cuckoo search, biclustering, gene expression data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670509 Minimizing Risk Costs through Optimal Responses in NPD Projects
Authors: Chan-Sik Kim, Jong-Seong Kim, Se Won Lee, Hoo-Gon Choi
Abstract:
In rapidly changing market environment, firms are investing a lot of time and resources into new product development (NPD) projects to make profit and to obtain competitive advantage. However, failure rate of NPD projects is becoming high due to various internal and external risks which hinder successful NPD projects. To reduce the failure rate, it is critical that risks have to be managed effectively and efficiently through good strategy, and treated by optimal responses to minimize risk cost. Four strategies are adopted to handle the risks in this study. The optimal responses are characterized by high reduction of risk costs with high efficiency. This study suggests a framework to decide the optimal responses considering the core risks, risk costs, response efficiency and response costs for successful NPD projects. Both binary particles warm optimization (BPSO) and multi-objective particle swarm optimization (MOPSO) methods are mainly used in the framework. Although several limitations exist in use for real industries, the frame work shows good strength for handling the risks with highly scientific ways through an example.
Keywords: NPD projects, risk cost, strategy, optimal responses, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963508 A 3 Dimensional Simulation of the Repeated Load Triaxial Test
Authors: Bao Thach Nguyen, Abbas Mohajerani
Abstract:
A typical flexible pavement structure consists of the surface, base, sub-base and subgrade soil. The loading traffic is transferred from the top layer with higher stiffness to the layer below with less stiffness. Under normal traffic loading, the behaviour of flexible pavement is very complex and can be predicted by using the repeated load triaxial test equipment in the laboratory. However, the nature of the repeated load triaxial testing procedure is considered time-consuming, complicated and expensive, and it is a challenge to carry out as a routine test in the laboratory. Therefore, the current paper proposes a numerical approach to simulate the repeated load triaxial test by employing the discrete element method. A sample with particle size ranging from 2.36mm to 19.0mm was constructed. Material properties, which included normal stiffness, shear stiffness, coefficient of friction, maximum dry density and particle density, were used as the input for the simulation. The sample was then subjected to a combination of deviator and confining stress and it was found that the discrete element method is able to simulate the repeated load triaxial test in the laboratory.
Keywords: Discrete element method, repeated load triaxial, pavement materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160507 Tumble Flow Analysis in an Unfired Engine Using Particle Image Velocimetry
Authors: B. Murali Krishna, J. M. Mallikarjuna
Abstract:
This paper deals with the experimental investigations of the in-cylinder tumble flows in an unfired internal combustion engine with a flat piston at the engine speeds ranging from 400 to 1000 rev/min., and also with the dome and dome-cavity pistons at an engine speed of 1000 rev/min., using particle image velocimetry. From the two-dimensional in-cylinder flow measurements, tumble flow analysis is carried out in the combustion space on a vertical plane passing through cylinder axis. To analyze the tumble flows, ensemble average velocity vectors are used and to characterize it, tumble ratio is estimated. From the results, generally, we have found that tumble ratio varies mainly with crank angle position. Also, at the end of compression stroke, average turbulent kinetic energy is more at higher engine speeds. We have also found that, at 330 crank angle position, flat piston shows an improvement of about 85 and 23% in tumble ratio, and about 24 and 2.5% in average turbulent kinetic energy compared to dome and dome-cavity pistons respectivelyKeywords: In-cylinder flow, Dome piston, Cavity, Tumble, PIV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284506 Impact of Loading Conditions on the Emission- Economic Dispatch
Authors: M. R. Alrashidi, M. E. El-Hawary
Abstract:
Environmental awareness and the recent environmental policies have forced many electric utilities to restructure their operational practices to account for their emission impacts. One way to accomplish this is by reformulating the traditional economic dispatch problem such that emission effects are included in the mathematical model. This paper presents a Particle Swarm Optimization (PSO) algorithm to solve the Economic- Emission Dispatch problem (EED) which gained recent attention due to the deregulation of the power industry and strict environmental regulations. The problem is formulated as a multi-objective one with two competing functions, namely economic cost and emission functions, subject to different constraints. The inequality constraints considered are the generating unit capacity limits while the equality constraint is generation-demand balance. A novel equality constraint handling mechanism is proposed in this paper. PSO algorithm is tested on a 30-bus standard test system. Results obtained show that PSO algorithm has a great potential in handling multi-objective optimization problems and is capable of capturing Pareto optimal solution set under different loading conditions.Keywords: Economic emission dispatch, economic cost dispatch, particle swarm, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901505 Mining Correlated Bicluster from Web Usage Data Using Discrete Firefly Algorithm Based Biclustering Approach
Authors: K. Thangavel, R. Rathipriya
Abstract:
For the past one decade, biclustering has become popular data mining technique not only in the field of biological data analysis but also in other applications like text mining, market data analysis with high-dimensional two-way datasets. Biclustering clusters both rows and columns of a dataset simultaneously, as opposed to traditional clustering which clusters either rows or columns of a dataset. It retrieves subgroups of objects that are similar in one subgroup of variables and different in the remaining variables. Firefly Algorithm (FA) is a recently-proposed metaheuristic inspired by the collective behavior of fireflies. This paper provides a preliminary assessment of discrete version of FA (DFA) while coping with the task of mining coherent and large volume bicluster from web usage dataset. The experiments were conducted on two web usage datasets from public dataset repository whereby the performance of FA was compared with that exhibited by other population-based metaheuristic called binary Particle Swarm Optimization (PSO). The results achieved demonstrate the usefulness of DFA while tackling the biclustering problem.
Keywords: Biclustering, Binary Particle Swarm Optimization, Discrete Firefly Algorithm, Firefly Algorithm, Usage profile Web usage mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142504 Geospatial Network Analysis Using Particle Swarm Optimization
Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh
Abstract:
The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.
Keywords: GIS, Outliers, PSO, Traffic Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2899503 Triple-input Single-output Voltage-mode Multifunction Filter Using Only Two Current Conveyors
Authors: Mehmet Sagbas, Kemal Fidanboylu, M. Can Bayram
Abstract:
A new voltage-mode triple-input single-output multifunction filter using only two current conveyors is presented. The proposed filter which possesses three inputs and single-output can generate all biquadratic filtering functions at the output terminal by selecting different input signal combinations. The validity of the proposed filter is verified through PSPICE simulations.Keywords: Active Filters, Voltage mode, Current conveyor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765502 Understanding the Discharge Activities in Transformer Oil under AC and DC Voltage Adopting UHF Technique
Authors: R. Sarathi, G. Koperundevi
Abstract:
Design of Converter transformer insulation is a major challenge. The insulation of these transformers is stressed by both AC and DC voltages. Particle contamination is one of the major problems in insulation structures, as they generate partial discharges leading it to major failure of insulation. Similarly corona discharges occur in transformer insulation. This partial discharge due to particle movement / corona formation in insulation structure under different voltage wave shapes, are different. In the present study, UHF technique is adopted to understand the discharge activity and could be realized that the characteristics of UHF signal generated under low and high fields are different. In the case of corona generated signal, the frequency content of the UHF sensor output lies in the range 0.3-1.2 GHz and is not much varied except for its increase in magnitude of discharge with the increase in applied voltage. It is realized that the current signal injected due to partial discharges/corona is about 4ns duration measured for first one half cycle. Wavelet technique is adopted in the present study. It allows one to identify the frequency content present in the signal at different instant of time. The STD-MRA analysis helps one to identify the frequency band in which the energy content of the UHF signal is maximum.Keywords: Contamination, Insulation, Partial Discharges, Transformer oil, UHF sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3848501 Chewing behavior and Bolus Properties as Affected by Different Rice Types
Authors: Anuchita Moongngarm, John E. Bronlund, Nigel Grigg, Naruemon Sriwai
Abstract:
The study aimed to investigate the effect of rice types on chewing behaviours (chewing time, number of chews, and portion size) and bolus properties (bolus moisture content, solid loss, and particle size distribution (PSD)) in human subjects. Five cooked rice types including brown rice (BR), white rice (WR), parboiled white rice (PR), high amylose white rice (HR) and waxy white rice (WXR) were chewed by six subjects. The chewing behaviours were recorded and the food boluses were collected during mastication. Rice typeswere found to significantly influence all chewing parameters evaluated. The WXR and BR showed the most pronounced differences compared with other rice types. The initial moisture content of un-chewed WXR was lowest (43.39%) whereas those of other rice types were ranged from 66.86 to 70.33%. The bolus obtained from chewing the WXR contained lowest moisture content (56.43%) whilst its solid loss (22.03%) was not significant different from those of all rice types. In PSD evaluation using Mastersizer S, the diameter of particles measured was ranged between 4 to 3500 μm. The particle size of food bolus from BR, HR, and WXR contained much finer particles than those of WR and PR.
Keywords: Chewing behavior, Mastication, Rice, Rice types, Bolus properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842500 Motor Imagery Signal Classification for a Four State Brain Machine Interface
Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan
Abstract:
Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification
Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462499 Small Signal Stability Assessment Employing PSO Based TCSC Controller with Comparison to GA Based Design
Authors: D. Mondal, A. Chakrabarti, A. Sengupta
Abstract:
This paper aims to select the optimal location and setting parameters of TCSC (Thyristor Controlled Series Compensator) controller using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) are prime choice in this issue, installation of FACTS device has been suggested here in order to achieve appreciable damping of system oscillations. However, performance of any FACTS devices highly depends upon its parameters and suitable location in the power network. In this paper PSO as well as GA based techniques are used separately and compared their performances to investigate this problem. The results of small signal stability analysis have been represented employing eigenvalue as well as time domain response in face of two common power system disturbances e.g., varying load and transmission line outage. It has been revealed that the PSO based TCSC controller is more effective than GA based controller even during critical loading condition.Keywords: Genetic Algorithm, Particle Swarm Optimization, Small Signal Stability, Thyristor Controlled Series Compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962498 Least-Squares Support Vector Machine for Characterization of Clusters of Microcalcifications
Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha
Abstract:
Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.
Keywords: Clusters of Microcalcifications, Ductal Carcinoma in Situ, Least-Square Support Vector Machine, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822497 Porous Particles Drying in a Vertical Upward Pneumatic Conveying Dryer
Authors: Samy M. El-Behery, W. A. El-Askary, K. A. Ibrahim, Mofreh H. Hamed
Abstract:
A steady two-phase flow model has been developed to simulate the drying process of porous particle in a pneumatic conveying dryer. The model takes into account the momentum, heat and mass transfer between the continuous phase and the dispersed phase. A single particle model was employed to calculate the evaporation rate. In this model the pore structure is simplified to allow the dominant evaporation mechanism to be readily identified at all points within the duct. The predominant mechanism at any time depends upon the pressure, temperature and the diameter of pore from which evaporating is occurring. The model was validated against experimental studies of pneumatic transport at low and high speeds as well as pneumatic drying. The effects of operating conditions on the dryer parameters are studied numerically. The present results show that the drying rate is enhanced as the inlet gas temperature and the gas flow rate increase and as the solid mass flow rate deceases. The present results also demonstrate the necessity of measuring the inlet gas velocity or the solid concentration in any experimental analysis.
Keywords: Two-phase, gas-solid, pneumatic drying, pneumatic conveying, heat and mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3275496 Optimizing Materials Cost and Mechanical Properties of PVC Electrical Cable-s Insulation by Using Mixture Experimental Design Approach
Authors: Safwan Altarazi, Raghad Hemeimat, Mousa Wakileh, Ra'ad Qsous, Aya Khreisat
Abstract:
With the development of the Polyvinyl chloride (PVC) products in many applications, the challenge of investigating the raw material composition and reducing the cost have both become more and more important. Considerable research has been done investigating the effect of additives on the PVC products. Most of the PVC composites research investigates only the effect of single/few factors, at a time. This isolated consideration of the input factors does not take in consideration the interaction effect of the different factors. This paper implements a mixture experimental design approach to find out a cost-effective PVC composition for the production of electrical-insulation cables considering the ASTM Designation (D) 6096. The results analysis showed that a minimum cost can be achieved through using 20% virgin PVC, 18.75% recycled PVC, 43.75% CaCO3 with participle size 10 microns, 14% DOP plasticizer, and 3.5% CPW plasticizer. For maximum UTS the compound should consist of: 17.5% DOP, 62.5% virgin PVC, and 20.0% CaCO3 of particle size 5 microns. Finally, for the highest ductility the compound should be made of 35% virgin PVC, 20% CaCO3 of particle size 5 microns, and 45.0% DOP plasticizer.Keywords: ASTM 6096, mixture experimental-design approach, PVC electrical cable insulation, recycled PVC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4713495 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization
Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun
Abstract:
Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points, which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem, since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.Keywords: Airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951494 Sensorless Speed Based on MRAS with Tuning of IP Speed Controller in FOC of Induction Motor Drive Using PSO
Authors: Youcef Bekakra, Djilani Ben attous
Abstract:
In this paper, a field oriented control (FOC) induction motor drive is presented. In order to eliminate the speed sensor, an adaptation algorithm for tuning the rotor speed is proposed. Based on the Model Reference Adaptive System (MRAS) scheme, the rotor speed is tuned to obtain an exact FOC induction motor drive. The reference and adjustable models, developed in stationary stator reference frame, are used in the MRAS scheme to estimate induction rotor speed from measured terminal voltages and currents. The Integral Proportional (IP) gains speed controller are tuned by a modern approach that is the Particle Swarm Optimization (PSO) algorithm in order to optimize the parameters of the IP controller. The use of PSO as an optimization algorithm makes the drive robust, with faster dynamic response, higher accuracy and insensitive to load variation. The proposed algorithm has been tested by numerical simulation, showing the capability of driving load.
Keywords: Induction motor drive, field oriented control, model reference adaptive system (MRAS), particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020493 Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis
Authors: Bandula-Heva, T., Dhanasekar, M.
Abstract:
True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.Keywords: Stress-Strain Curve, Tensile Test, Particle Image Velocimetry, Railhead Metal Properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3455492 New Data Reuse Adaptive Filters with Noise Constraint
Authors: Young-Seok Choi
Abstract:
We present a new framework of the data-reusing (DR) adaptive algorithms by incorporating a constraint on noise, referred to as a noise constraint. The motivation behind this work is that the use of the statistical knowledge of the channel noise can contribute toward improving the convergence performance of an adaptive filter in identifying a noisy linear finite impulse response (FIR) channel. By incorporating the noise constraint into the cost function of the DR adaptive algorithms, the noise constrained DR (NC-DR) adaptive algorithms are derived. Experimental results clearly indicate their superior performance over the conventional DR ones.Keywords: Adaptive filter, data-reusing, least-mean square (LMS), affine projection (AP), noise constraint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636491 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements
Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal
Abstract:
In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, despite the tradeoff between the noise level and the speed of the detection. In this paper, an improvement is introduced in the Kalman filter, through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, the effect on the response to false alarms is also presented and false alarm rate show improvement.
Keywords: Kalman Filter, Innovation, False Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2234490 A new Configurable Decimation Filter using Pascal-s Triangle Theorem
Authors: A. Chahardah Cherik, E. Farshidi
Abstract:
This paper presents a new configurable decimation filter for sigma-delta modulators. The filter employs the Pascal-s triangle-s theorem for building the coefficients of non-recursive decimation filters. The filter can be connected to the back-end of various modulators with different output accuracy. In this work two methods are shown and then compared from area occupation viewpoint. First method uses the memory and the second one employs Pascal-s triangle-s method, aiming to reduce required gates. XILINX ISE v10 is used for implementation and confirmation the filter.Keywords: Decimation filter, sigma delta, Pascal's triangle'stheorem, memory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693489 Sigma-Delta ADCs Converter a Study Case
Authors: Thiago Brito Bezerra, Mauro Lopes de Freitas, Waldir Sabino da Silva Júnior
Abstract:
The Sigma-Delta A/D converters have been proposed as a practical application for A/D conversion at high rates because of its simplicity and robustness to imperfections in the circuit, also because the traditional converters are more difficult to implement in VLSI technology. These difficulties with conventional conversion methods need precise analog components in their filters and conversion circuits, and are more vulnerable to noise and interference. This paper aims to analyze the architecture, function and application of Analog-Digital converters (A/D) Sigma-Delta to overcome these difficulties, showing some simulations using the Simulink software and Multisim.
Keywords: Analysis, Oversampling Modulator, A/D converters, Sigma-Delta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694488 The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance
Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri
Abstract:
Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.
Keywords: Gaussian approximation, KALMAN smoother, Parameter estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781487 Enhanced Bidirectional Selection Sort
Authors: Jyoti Dua
Abstract:
An algorithm is a well-defined procedure that takes some input in the form of some values, processes them and gives the desired output. It forms the basis of many other algorithms such as searching, pattern matching, digital filters etc., and other applications have been found in database systems, data statistics and processing, data communications and pattern matching. This paper introduces algorithmic “Enhanced Bidirectional Selection” sort which is bidirectional, stable. It is said to be bidirectional as it selects two values smallest from the front and largest from the rear and assigns them to their appropriate locations thus reducing the number of passes by half the total number of elements as compared to selection sort.
Keywords: Bubble sort, cocktail sort, selection sort, heap sort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2382486 Weakened Vortex Shedding from a Rotating Cylinder
Authors: Sharul S. Dol
Abstract:
An experimental study of the turbulent near wake of a rotating circular cylinder was made at a Reynolds number of 2000 for velocity ratios, λ between 0 and 2.7. Particle image velocimetry data are analyzed to study the effects of rotation on the flow structures behind the cylinder. The results indicate that the rotation of the cylinder causes significant changes in the vortex formation. Kármán vortex shedding pattern of alternating vortices gives rise to strong periodic fluctuations of a vortex street for λ < 2.0. Alternate vortex shedding is weak and close to being suppressed at λ = 2.0 resulting a distorted street with vortices of alternating sense subsequently being found on opposite sides. Only part of the circulation is shed due to the interference in the separation point, mixing in the base region, re-attachment, and vortex cut-off phenomenon. Alternating vortex shedding pattern diminishes and completely disappears when the velocity ratio is 2.7. The shed vortices are insignificant in size and forming a single line of vortex street. It is clear that flow asymmetries will deteriorate vortex shedding, and when the asymmetries are large enough, total inhibition of a periodic street occurs.
Keywords: Circulation, particle image velocimetry, rotating circular cylinder, smoke-wire flow visualization, Strouhal number, vortex shedding, vortex street.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874485 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery
Authors: Chun-Wei Lin, Yu-Lin Chen
Abstract:
As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.
Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994484 Application of Computational Intelligence Techniques for Economic Load Dispatch
Authors: S.C. Swain, S. Panda, A.K. Mohanty, C. Ardil
Abstract:
This paper presents the applications of computational intelligence techniques to economic load dispatch problems. The fuel cost equation of a thermal plant is generally expressed as continuous quadratic equation. In real situations the fuel cost equations can be discontinuous. In view of the above, both continuous and discontinuous fuel cost equations are considered in the present paper. First, genetic algorithm optimization technique is applied to a 6- generator 26-bus test system having continuous fuel cost equations. Results are compared to conventional quadratic programming method to show the superiority of the proposed computational intelligence technique. Further, a 10-generator system each with three fuel options distributed in three areas is considered and particle swarm optimization algorithm is employed to minimize the cost of generation. To show the superiority of the proposed approach, the results are compared with other published methods.
Keywords: Economic Load Dispatch, Continuous Fuel Cost, Quadratic Programming, Real-Coded Genetic Algorithm, Discontinuous Fuel Cost, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282