Search results for: binary data matrix model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13548

Search results for: binary data matrix model

13128 Structural Damage Detection via Incomplete Modal Data Using Output Data Only

Authors: Ahmed Noor Al-Qayyim, Barlas Ozden Caglayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on to obtain very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. The study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using ‘Two Points Condensation (TPC) technique’. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices obtain from optimization the equation of motion using the measured test data. The current stiffness matrices compare with original (undamaged) stiffness matrices. The large percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element, where two cases consider. The method detects the damage and determines its location accurately in both cases. In addition, the results illustrate these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can be used also for big structures.

Keywords: Damage detection, two points–condensation, structural health monitoring, signals processing, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
13127 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain subgroups of time series data with normal distribution from the inflow into wastewater treatment plant data, composed of several groups differing by mean value. Two simple algorithms, K-mean and EM, were chosen as a clustering method. The Rand index was used to measure the similarity. After simple meta-clustering, a regression model was performed for each subgroups. The final model was a sum of the subgroups models. The quality of the obtained model was compared with the regression model made using the same explanatory variables, but with no clustering of data. Results were compared using determination coefficient (R2), measure of prediction accuracy- mean absolute percentage error (MAPE) and comparison on a linear chart. Preliminary results allow us to foresee the potential of the presented technique.

Keywords: Clustering, Data analysis, Data mining, Predictive models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
13126 A New Biometric Human Identification Based On Fusion Fingerprints and Finger Veins Using monoLBP Descriptor

Authors: Alima Damak Masmoudi, Randa Boukhris Trabelsi, Dorra Sellami Masmoudi

Abstract:

Single biometric modality recognition is not able to meet the high performance supplies in most cases with its application become more and more broadly. Multimodal biometrics identification represents an emerging trend recently. This paper investigates a novel algorithm based on fusion of both fingerprint and fingervein biometrics. For both biometric recognition, we employ the Monogenic Local Binary Pattern (MonoLBP). This operator integrate the orginal LBP (Local Binary Pattern ) with both other rotation invariant measures: local phase and local surface type. Experimental results confirm that a weighted sum based proposed fusion achieves excellent identification performances opposite unimodal biometric systems. The AUC of proposed approach based on combining the two modalities has very close to unity (0.93).

Keywords: fingerprint, fingervein, LBP, MonoLBP, fusion, biometric trait.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
13125 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

Authors: Mohammed T. Hayajneh

Abstract:

Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.

Keywords: Composite, fuzzy, tool life, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
13124 2D Bar Codes Reading: Solutions for Camera Phones

Authors: Hao Wang, Yanming Zou

Abstract:

Two-dimensional (2D) bar codes were designed to carry significantly more data with higher information density and robustness than its 1D counterpart. Thanks to the popular combination of cameras and mobile phones, it will naturally bring great commercial value to use the camera phone for 2D bar code reading. This paper addresses the problem of specific 2D bar code design for mobile phones and introduces a low-level encoding method of matrix codes. At the same time, we propose an efficient scheme for 2D bar codes decoding, of which the effort is put on solutions of the difficulties introduced by low image quality that is very common in bar code images taken by a phone camera.

Keywords: 2D bar code reading, camera phone, low-level encoding, mixed model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
13123 Data Oriented Model of Image: as a Framework for Image Processing

Authors: A. Habibizad Navin, A. Sadighi, M. Naghian Fesharaki, M. Mirnia, M. Teshnelab, R. Keshmiri

Abstract:

This paper presents a new data oriented model of image. Then a representation of it, ADBT, is introduced. The ability of ADBT is clustering, segmentation, measuring similarity of images etc, with desired precision and corresponding speed.

Keywords: Data oriented modelling, image, clustering, segmentation, classification, ADBT and image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
13122 A New Preconditioned AOR Method for Z-matrices

Authors: Guangbin Wang, Ning Zhang, Fuping Tan

Abstract:

In this paper, we present a preconditioned AOR-type iterative method for solving the linear systems Ax = b, where A is a Z-matrix. And give some comparison theorems to show that the rate of convergence of the preconditioned AOR-type iterative method is faster than the rate of convergence of the AOR-type iterative method.

Keywords: Z-matrix, AOR-type iterative method, precondition, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
13121 A Hybrid Method for Determination of Effective Poles Using Clustering Dominant Pole Algorithm

Authors: Anuj Abraham, N. Pappa, Daniel Honc, Rahul Sharma

Abstract:

In this paper, an analysis of some model order reduction techniques is presented. A new hybrid algorithm for model order reduction of linear time invariant systems is compared with the conventional techniques namely Balanced Truncation, Hankel Norm reduction and Dominant Pole Algorithm (DPA). The proposed hybrid algorithm is known as Clustering Dominant Pole Algorithm (CDPA), is able to compute the full set of dominant poles and its cluster center efficiently. The dominant poles of a transfer function are specific eigenvalues of the state space matrix of the corresponding dynamical system. The effectiveness of this novel technique is shown through the simulation results.

Keywords: Balanced truncation, Clustering, Dominant pole, Hankel norm, Model reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687
13120 Machine Scoring Model Using Data Mining Techniques

Authors: Wimalin S. Laosiritaworn, Pongsak Holimchayachotikul

Abstract:

this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.

Keywords: Computer Numerical Control, Data Mining, HardDisk Drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
13119 Scorbot-ER 4U Using Forward Kinematics Modelling and Analysis

Authors: D. Maneetham, L. Sivhour

Abstract:

Robotic arm manipulators are widely used to accomplish many kinds of tasks. SCORBOT-ER 4u is a 5-degree of freedom (DOF) vertical articulated educational robotic arm, and all joints are revolute. It is specifically designed to perform pick and place task with its gripper. The pick and place task consists of consideration of the end effector coordinate of the robotic arm and the desired position coordinate in its workspace. This paper describes about forward kinematics modeling and analysis of the robotic end effector motion through joint space. The kinematics problems are defined by the transformation from the Cartesian space to the joint space. Denavit-Hartenberg (D-H) model is used in order to model the robotic links and joints with 4x4 homogeneous matrix. The forward kinematics model is also developed and simulated in MATLAB. The mathematical model is validated by using robotic toolbox in MATLAB. By using this method, it may be applicable to get the end effector coordinate of this robotic arm and other similar types to this arm. The software development of SCORBOT-ER 4u is also described here. PC-and EtherCAT based control technology from BECKHOFF is used to control the arm to express the pick and place task.

Keywords: Forward kinematics, D-H model, robotic toolbox, PC-and EtherCAT based control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
13118 Fabrication Characteristics and Mechanical Behavior of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique

Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya

Abstract:

This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (solid waste bye product of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4 and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement, estimated percentage porosity, tensile testing, micro hardness measurement and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was however superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.

Keywords: Fly ash, hybrid composite, mechanical behaviour, stir-cast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
13117 Multistage Data Envelopment Analysis Model for Malmquist Productivity Index Using Grey's System Theory to Evaluate Performance of Electric Power Supply Chain in Iran

Authors: Mesbaholdin Salami, Farzad Movahedi Sobhani, Mohammad Sadegh Ghazizadeh

Abstract:

Evaluation of organizational performance is among the most important measures that help organizations and entities continuously improve their efficiency. Organizations can use the existing data and results from the comparison of units under investigation to obtain an estimation of their performance. The Malmquist Productivity Index (MPI) is an important index in the evaluation of overall productivity, which considers technological developments and technical efficiency at the same time. This article proposed a model based on the multistage MPI, considering limited data (Grey’s theory). This model can evaluate the performance of units using limited and uncertain data in a multistage process. It was applied by the electricity market manager to Iran’s electric power supply chain (EPSC), which contains uncertain data, to evaluate the performance of its actors. Results from solving the model showed an improvement in the accuracy of future performance of the units under investigation, using the Grey’s system theory. This model can be used in all case studies, in which MPI is used and there are limited or uncertain data.

Keywords: Malmquist Index, Grey's Theory, Charnes Cooper & Rhodes (CCR) Model, network data envelopment analysis, Iran electricity power chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
13116 Computing Transition Intensity Using Time-Homogeneous Markov Jump Process: Case of South African HIV/AIDS Disposition

Authors: A. Bayaga

Abstract:

This research provides a technical account of estimating Transition Probability using Time-homogeneous Markov Jump Process applying by South African HIV/AIDS data from the Statistics South Africa. It employs Maximum Likelihood Estimator (MLE) model to explore the possible influence of Transition Probability of mortality cases in which case the data was based on actual Statistics South Africa. This was conducted via an integrated demographic and epidemiological model of South African HIV/AIDS epidemic. The model was fitted to age-specific HIV prevalence data and recorded death data using MLE model. Though the previous model results suggest HIV in South Africa has declined and AIDS mortality rates have declined since 2002 – 2013, in contrast, our results differ evidently with the generally accepted HIV models (Spectrum/EPP and ASSA2008) in South Africa. However, there is the need for supplementary research to be conducted to enhance the demographic parameters in the model and as well apply it to each of the nine (9) provinces of South Africa.

Keywords: AIDS mortality rates, Epidemiological model, Time-homogeneous Markov Jump Process, Transition Probability, Statistics South Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
13115 Pattern Classification of Back-Propagation Algorithm Using Exclusive Connecting Network

Authors: Insung Jung, Gi-Nam Wang

Abstract:

The objective of this paper is to a design of pattern classification model based on the back-propagation (BP) algorithm for decision support system. Standard BP model has done full connection of each node in the layers from input to output layers. Therefore, it takes a lot of computing time and iteration computing for good performance and less accepted error rate when we are doing some pattern generation or training the network. However, this model is using exclusive connection in between hidden layer nodes and output nodes. The advantage of this model is less number of iteration and better performance compare with standard back-propagation model. We simulated some cases of classification data and different setting of network factors (e.g. hidden layer number and nodes, number of classification and iteration). During our simulation, we found that most of simulations cases were satisfied by BP based using exclusive connection network model compared to standard BP. We expect that this algorithm can be available to identification of user face, analysis of data, mapping data in between environment data and information.

Keywords: Neural network, Back-propagation, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
13114 Zero Inflated Models for Overdispersed Count Data

Authors: Y. N. Phang, E. F. Loh

Abstract:

The zero inflated models are usually used in modeling count data with excess zeros where the existence of the excess zeros could be structural zeros or zeros which occur by chance. These type of data are commonly found in various disciplines such as finance, insurance, biomedical, econometrical, ecology, and health sciences which involve sex and health dental epidemiology. The most popular zero inflated models used by many researchers are zero inflated Poisson and zero inflated negative binomial models. In addition, zero inflated generalized Poisson and zero inflated double Poisson models are also discussed and found in some literature. Recently zero inflated inverse trinomial model and zero inflated strict arcsine models are advocated and proven to serve as alternative models in modeling overdispersed count data caused by excessive zeros and unobserved heterogeneity. The purpose of this paper is to review some related literature and provide a variety of examples from different disciplines in the application of zero inflated models. Different model selection methods used in model comparison are discussed.

Keywords: Overdispersed count data, model selection methods, likelihood ratio, AIC, BIC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4532
13113 Quantum Enhanced Correlation Matrix Memories via States Orthogonalisation

Authors: Mario Mastriani, Marcelo Naiouf

Abstract:

This paper introduces a Quantum Correlation Matrix Memory (QCMM) and Enhanced QCMM (EQCMM), which are useful to work with quantum memories. A version of classical Gram-Schmidt orthogonalisation process in Dirac notation (called Quantum Orthogonalisation Process: QOP) is presented to convert a non-orthonormal quantum basis, i.e., a set of non-orthonormal quantum vectors (called qudits) to an orthonormal quantum basis, i.e., a set of orthonormal quantum qudits. This work shows that it is possible to improve the performance of QCMM thanks QOP algorithm. Besides, the EQCMM algorithm has a lot of additional fields of applications, e.g.: Steganography, as a replacement Hopfield Networks, Bilevel image processing, etc. Finally, it is important to mention that the EQCMM is an extremely easy to implement in any firmware.

Keywords: Quantum Algebra, correlation matrix memory, Dirac notation, orthogonalisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
13112 Optimal Data Compression and Filtering: The Case of Infinite Signal Sets

Authors: Anatoli Torokhti, Phil Howlett

Abstract:

We present a theory for optimal filtering of infinite sets of random signals. There are several new distinctive features of the proposed approach. First, we provide a single optimal filter for processing any signal from a given infinite signal set. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Keywords: stochastic signals, optimization problems in signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
13111 Generic Filtering of Infinite Sets of Stochastic Signals

Authors: Anatoli Torokhti, Phil Howlett

Abstract:

A theory for optimal filtering of infinite sets of random signals is presented. There are several new distinctive features of the proposed approach. First, a single optimal filter for processing any signal from a given infinite signal set is provided. Second, the filter is presented in the special form of a sum with p terms where each term is represented as a combination of three operations. Each operation is a special stage of the filtering aimed at facilitating the associated numerical work. Third, an iterative scheme is implemented into the filter structure to provide an improvement in the filter performance at each step of the scheme. The final step of the scheme concerns signal compression and decompression. This step is based on the solution of a new rank-constrained matrix approximation problem. The solution to the matrix problem is described in this paper. A rigorous error analysis is given for the new filter.

Keywords: Optimal filtering, data compression, stochastic signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
13110 Bootstrap Confidence Intervals and Parameter Estimation for Zero Inflated Strict Arcsine Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

Zero inflated Strict Arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, maximum likelihood estimation method is used in estimating the parameters for zero inflated strict arcsine model. Bootstrapping is then employed to compute the confidence intervals for the estimated parameters.

Keywords: overdispersed count data, maximum likelihood estimation, simulated annealing, BCa confidence intervals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
13109 Representing Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
13108 High-Resolution 12-Bit Segmented Capacitor DAC in Successive Approximation ADC

Authors: Wee Leong Son, Hasmayadi Abdul Majid, Rohana Musa

Abstract:

This paper study the segmented split capacitor Digital-to-Analog Converter (DAC) implemented in a differentialtype 12-bit Successive Approximation Analog-to-Digital Converter (SA-ADC). The series capacitance split array method employed as it reduced the total area of the capacitors required for high resolution DACs. A 12-bit regular binary array structure requires 2049 unit capacitors (Cs) while the split array needs 127 unit Cs. These results in the reduction of the total capacitance and power consumption of the series split array architectures as to regular binary-weighted structures. The paper will show the 12-bit DAC series split capacitor with 4-bit thermometer coded DAC architectures as well as the simulation and measured results.

Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Low voltage ADC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9561
13107 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.

Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232
13106 Dynamics of Phytoplankton Blooms in the Baltic Sea – Numerical Simulations

Authors: L. Dzierzbicka-Głowacka, M. Janecki

Abstract:

Dynamic of phytoplankton blooms in the Baltic Sea has been analyzed applying the numerical ecosystem model 3D CEMBS. The model consists of the hydrodynamic model (POP, version 2.1) and the ice model (CICE, version 4.0), which are imposed by the atmospheric data model (DATM7). The 3D model has an ecosystem module, activated in 2012 in the operational mode. The ecosystem model consists of 11 main variables: biomass of small-size phytoplankton and large-size phytoplankton and cyanobacteria, zooplankton biomass, dissolved and molecular detritus, dissolved oxygen concentration, as well as concentrations of nutrients, including: nitrates, ammonia, phosphates and silicates. The 3D-CEMBS model is an effective tool for solving problems related to phytoplankton blooms dynamic in the Baltic Sea

Keywords: Ecosystem model, phytoplankton, Baltic Sea

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
13105 Fuzzy Clustering Analysis in Real Estate Companies in China

Authors: Jianfeng Li, Feng Jin, Xiaoyu Yang

Abstract:

This paper applies fuzzy clustering algorithm in classifying real estate companies in China according to some general financial indexes, such as income per share, share accumulation fund, net profit margins, weighted net assets yield and shareholders' equity. By constructing and normalizing initial partition matrix, getting fuzzy similar matrix with Minkowski metric and gaining the transitive closure, the dynamic fuzzy clustering analysis for real estate companies is shown clearly that different clustered result change gradually with the threshold reducing, and then, it-s shown there is the similar relationship with the prices of those companies in stock market. In this way, it-s great valuable in contrasting the real estate companies- financial condition in order to grasp some good chances of investment, and so on.

Keywords: Fuzzy clustering algorithm, data mining, real estate company, financial analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
13104 Production of Spherical Cementite within Bainitic Matrix Microstructures in High Carbon Powder Metallurgy Steels

Authors: O. Altuntaş, A. Güral

Abstract:

The hardness-microstructure relationships of spherical cementite in bainitic matrix obtained by a different heat treatment cycles carried out to high carbon powder metallurgy (P/M) steel were investigated. For this purpose, 1.5 wt.% natural graphite powder admixed in atomized iron powders and the mixed powders were compacted under 700 MPa at room temperature and then sintered at 1150 °C under a protective argon gas atmosphere. The densities of the green and sintered samples were measured via the Archimedes method. A density of 7.4 g/cm3 was obtained after sintering and a density of 94% was achieved. The sintered specimens having primary cementite plus lamellar pearlitic structures were fully quenched from 950 °C temperature and then over-tempered at 705 °C temperature for 60 minutes to produce spherical-fine cementite particles in the ferritic matrix. After by this treatment, these samples annealed at 735 °C temperature for 3 minutes were austempered at 300 °C salt bath for a period of 1 to 5 hours. As a result of this process, it could be able to produced spherical cementite particle in the bainitic matrix. This microstructure was designed to improve wear and toughness of P/M steels. The microstructures were characterized and analyzed by SEM and micro and macro hardness.

Keywords: Powder metallurgy steel, heat treatment, bainite, spherical cementite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996
13103 Bit Model Based Key Management Scheme for Secure Group Communication

Authors: R. Varalakshmi

Abstract:

For the last decade, researchers have started to focus their interest on Multicast Group Key Management Framework. The central research challenge is secure and efficient group key distribution. The present paper is based on the Bit model based Secure Multicast Group key distribution scheme using the most popular absolute encoder output type code named Gray Code. The focus is of two folds. The first fold deals with the reduction of computation complexity which is achieved in our scheme by performing fewer multiplication operations during the key updating process. To optimize the number of multiplication operations, an O(1) time algorithm to multiply two N-bit binary numbers which could be used in an N x N bit-model of reconfigurable mesh is used in this proposed work. The second fold aims at reducing the amount of information stored in the Group Center and group members while performing the update operation in the key content. Comparative analysis to illustrate the performance of various key distribution schemes is shown in this paper and it has been observed that this proposed algorithm reduces the computation and storage complexity significantly. Our proposed algorithm is suitable for high performance computing environment.

Keywords: Multicast Group key distribution, Bit model, Integer Multiplications, reconfigurable mesh, optimal algorithm, Gray Code, Computation Complexity, Storage Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
13102 Some Equalities Connected with Fuzzy Soft Matrices

Authors: D. R. Jain

Abstract:

The aim of this paper is to use matrix representation of Fuzzy soft sets for proving some equalities connected with Fuzzy soft sets based on set-operations.

Keywords: Equality, Fuzzy soft matrix, Fuzzy soft sets, operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
13101 Criticality Assessment of Failures in Multipoint Communication Networks

Authors: Myriam Noureddine, Rachid Noureddine

Abstract:

Following the current economic challenges and competition, all systems, whatever their field, must be efficient and operational during their activity. In this context, it is imperative to anticipate, identify, eliminate and estimate the failures of systems, which may lead to an interruption of their function. This need requires the management of possible risks, through an assessment of the failures criticality following a dependability approach. On the other hand, at the time of new information technologies and considering the networks field evolution, the data transmission has evolved towards a multipoint communication, which can simultaneously transmit information from a sender to multiple receivers. This article proposes the failures criticality assessment of a multipoint communication network, integrates a database of network failures and their quantifications. The proposed approach is validated on a case study and the final result allows having the criticality matrix associated with failures on the considered network, giving the identification of acceptable risks.

Keywords: Dependability, failure, multipoint network, criticality matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
13100 A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion

Authors: Aki Happonen, Adrian Burian, Erwin Hemming

Abstract:

Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on simulations using different condition numbers and different matrix sizes. Simulation results show that 16 bits word length gives sufficient performance for small matrices with low condition number. Larger matrices and higher condition numbers require more dynamic range for a fixedpoint implementation.

Keywords: Cholesky Decomposition, Fixed-point, Matrix inversion, Reconfigurable processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
13099 Comparison of Material Constitutive Models Used in FEA of Low Volume Roads

Authors: Lenka Ševelová, Aleš Florian

Abstract:

Appropriate and progressive tool for analyzing behavior of low volume roads are probabilistic models used in reliability analyses. The necessary part of the probabilistic model is the deterministic model of structural behavior. The FE model of low volume roads is created in the ANSYS software. It is able to determine the state of stress and deformation in any point of the structure and thus generate data required for the reliability analysis. The paper compares two material constitutive models used for modeling of unbound non-homogenous materials used in low volume roads. The first model is linear elastic model according to Hook theory (H model), the second one is nonlinear elastic-plastic Drucker-Prager model (D-P model).

Keywords: FEA, FEM, geotechnical materials, low volume roads, material constitutive models, pavement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2886