Bootstrap Confidence Intervals and Parameter Estimation for Zero Inflated Strict Arcsine Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Bootstrap Confidence Intervals and Parameter Estimation for Zero Inflated Strict Arcsine Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

Zero inflated Strict Arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, maximum likelihood estimation method is used in estimating the parameters for zero inflated strict arcsine model. Bootstrapping is then employed to compute the confidence intervals for the estimated parameters.

Keywords: overdispersed count data, maximum likelihood estimation, simulated annealing, BCa confidence intervals.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078040

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284

References:


[1] H. J. Ader, G. J. Mellenbergh, and D. J. Hand, "Advising on research methods: A consultant-s companion". Huizen, The Netherlands: Johannes van Kessel Publishing ISBN 978-90-79418-01-5, 2008
[2] J. Carpenter, and J. Bithell, "Bootstrap confidence intervals: when, which, what? A practical guide for medical guide for medical statisticians". Statistics in Medicine, 19, 1141-1164, 2000.
[3] A. C. Davison, and D. V. Hinkley, "Bootstrap methods and their application". Cambridge University Press ,1996.
[4] T. J. DiCiccio, and B. Efron, "Bootstrap confidence intervals". Statistical Science, 11, 189-212, 1996.
[5] B. Efron, and R. J. Tibshirani, " An introduction to the Bootstrap". Chapman and Hall: London, 1993.
[6] A. Gaussiaux, and J. Lemaire, "Methodes d-ajustement de distributions de sinistres" . Bulletin of the Association of Swiss Actuaries, 81, 87-95, 1981.
[7] W. L. Goffe, G. Ferrier, and J. John Rogers, "Global optimization of statistical functions with simulated annealing". Journal of Econometric, 60 (1/2), 65-100, 1994
[8] C. C. Kokonenji, "On Strict Arcsine Distribution". Communications in Statistics. Theory Methods.33(5), 99A3-1006, 2004.
[9] C. C. Kokonendji, and S. Marque, "A strict arcsine regression model". African Diaspora Journal of Mathematics. Volume 4, Issue 3. Ed by D. Toka, M. N. Gaston and Z. Said. NOVA Publisher, 2007.
[10] G. Letac, and M. Mora, "Natural real exponential families with cubic variance functions" . Ann. Statist., 18, 1-37, 1990.
[11] Y. N. Phang, and E. R. Loh. Proceedings: IASC 2008: Joint Meeting of 4th World Conference of the IASC and 6th Conference of the IASC and 6th conference of the Asian Regional Section of the IASC on Computational Statistic and Data Analysis, Yokohama, Japan, 2008.
[12] A. M. Mood, F. A. Graybill, and S. D. Boes, " Introduction to the Theory of Statistic". McGraw-Hill Series in Probability and Statistics, 1913