Search results for: Fractional-order modeling
1643 MONARC: A Case Study on Simulation Analysis for LHC Activities
Authors: Ciprian Dobre
Abstract:
The scale, complexity and worldwide geographical spread of the LHC computing and data analysis problems are unprecedented in scientific research. The complexity of processing and accessing this data is increased substantially by the size and global span of the major experiments, combined with the limited wide area network bandwidth available. We present the latest generation of the MONARC (MOdels of Networked Analysis at Regional Centers) simulation framework, as a design and modeling tool for large scale distributed systems applied to HEP experiments. We present simulation experiments designed to evaluate the capabilities of the current real-world distributed infrastructure to support existing physics analysis processes and the means by which the experiments bands together to meet the technical challenges posed by the storage, access and computing requirements of LHC data analysis within the CMS experiment.Keywords: Modeling and simulation, evaluation, large scale distributed systems, LHC experiments, CMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18111642 A Goal-Driven Crime Scripting Framework
Authors: Hashem Dehghanniri
Abstract:
Crime scripting is a simple and effective crime modeling technique that aims to improve understanding of security analysts about security and crime incidents. Low-quality scripts provide a wrong, incomplete, or sophisticated understanding of the crime commission process, which oppose the purpose of their application, e.g., identifying effective and cost-efficient situational crime prevention (SCP) measures. One important and overlooked factor in generating quality scripts is the crime scripting method. This study investigates the problems within the existing crime scripting practices and proposes a crime scripting approach that contributes to generating quality crime scripts. It was validated by experienced crime scripters. This framework helps analysts develop better crime scripts and contributes to their effective application, e.g., SCP measures identification or policy-making.
Keywords: Attack modeling, crime commission process, crime script, situational crime prevention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7071641 Numerical Modeling of Determination of in situ Rock Mass Deformation Modulus Using the Plate Load Test
Authors: A. Khodabakhshi, A. Mortazavi
Abstract:
Accurate determination of rock mass deformation modulus, as an important design parameter, is one of the most controversial issues in most engineering projects. A 3D numerical model of standard plate load test (PLT) using the FLAC3D code was carried to investigate the mechanism governing the test process. Five objectives were the focus of this study. The first goal was to employ 3D modeling in the interpretation of PLT conducted at the Bazoft dam site, Iran. The second objective was to investigate the effect of displacements measuring depth from the loading plates on the calculated moduli. The magnitude of rock mass deformation modulus calculated from PLT depends on anchor depth, and in practice, this may be a cause of error in the selection of realistic deformation modulus for the rock mass. The third goal of the study was to investigate the effect of testing plate diameter on the calculated modulus. Moreover, a comparison of the calculated modulus from ISRM formula, numerical modeling and calculated modulus from the actual PLT carried out at right abutment of the Bazoft dam site was another objective of the study. Finally, the effect of plastic strains on the calculated moduli in each of the loading-unloading cycles for three loading plates was investigated. The geometry, material properties, and boundary conditions on the constructed 3D model were selected based on the in-situ conditions of PLT at Bazoft dam site. A good agreement was achieved between numerical model results and the field tests results.
Keywords: Deformation modulus, numerical model, plate loading test, rock mass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7721640 Electromagnetic Field Modeling in Human Tissue
Authors: Iliana Marinova, Valentin Mateev
Abstract:
For investigations of electromagnetic field distributions in biological structures by Finite Element Method (FEM), a method for automatic 3D model building of human anatomical objects is developed. Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Several FEM models of anatomical objects are built. Formulation using magnetic vector potential and scalar electric potential (A-V, A) is used for modeling of electromagnetic fields in human tissue objects. The developed models are suitable for investigations of electromagnetic field distributions in human tissues exposed in external fields during magnetic stimulation, defibrillation, impedance tomography etc.Keywords: electromagnetic field, finite element method, humantissue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52951639 Learning Monte Carlo Data for Circuit Path Length
Authors: Namal A. Senanayake, A. Beg, Withana C. Prasad
Abstract:
This paper analyzes the patterns of the Monte Carlo data for a large number of variables and minterms, in order to characterize the circuit path length behavior. We propose models that are determined by training process of shortest path length derived from a wide range of binary decision diagram (BDD) simulations. The creation of the model was done use of feed forward neural network (NN) modeling methodology. Experimental results for ISCAS benchmark circuits show an RMS error of 0.102 for the shortest path length complexity estimation predicted by the NN model (NNM). Use of such a model can help reduce the time complexity of very large scale integrated (VLSI) circuitries and related computer-aided design (CAD) tools that use BDDs.Keywords: Monte Carlo data, Binary decision diagrams, Neural network modeling, Shortest path length estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951638 Impacts of Project-Overload on Innovation inside Organizations: Agent-Based Modeling
Authors: Farnaz Motamediyan Dehkordi, Anthony Thompson, Tobias Larsson
Abstract:
Market competition and a desire to gain advantages on globalized market, drives companies towards innovation efforts. Project overload is an unpleasant phenomenon, which is happening for employees inside those organizations trying to make the most efficient use of their resources to be innovative. But what are the impacts of project overload on organization-s innovation capabilities? Advanced engineering teams (AE) inside a major heavy equipment manufacturer are suffering from project overload in their quest for innovation. In this paper, Agent-based modeling (ABM) is used to examine the current reality of the company context, and of the AE team, where the opportunities and challenges for reducing the risk of project overload and moving towards innovation were identified. Project overload is more likely to stifle innovation and creativity inside teams. On the other hand, motivations on proper challenging goals are more likely to help individual to alleviate the negative aspects of low level of project overload.
Keywords: Innovation, Creativity, Project overload, Agentbased modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18411637 Towards Finite Element Modeling of the Accoustics of Human Head
Authors: Maciej Paszynski, Leszek Demkowicz, Jason Kurtz
Abstract:
In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.
Keywords: finite element method, acoustics, coupled problems, biomechanics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19771636 K-best Night Vision Devices by Multi-Criteria Mixed-Integer Optimization Modeling
Authors: Daniela I. Borissova, Ivan C. Mustakerov
Abstract:
The paper describes an approach for defining of k-best night vision devices based on multi-criteria mixed-integer optimization modeling. The parameters of night vision devices are considered as criteria that have to be optimized. Using different user preferences for the relative importance between parameters different choice of k-best devices can be defined. An ideal device with all of its parameters at their optimum is used to determine how far the particular device from the ideal one is. A procedure for evaluation of deviation between ideal solution and k-best solutions is presented. The applicability of the proposed approach is numerically illustrated using real night vision devices data. The proposed approach contributes to quality of decisions about choice of night vision devices by making the decision making process more certain, rational and efficient.
Keywords: K-best devices, mixed-integer model, multi-criteria problem, night vision devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18031635 Modeling and Simulating of Gas Turbine Cooled Blades
Authors: А. Pashayev, D. Askerov, R. Sadiqov, A. Samedov, C. Ardil
Abstract:
In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.
Keywords: Modeling, Simulating, Gas Turbine, Cooled Blades.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16061634 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting
Authors: R. Behmanesh, I. Rahimi
Abstract:
recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.Keywords: RNN, DOE, regression, control chart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16591633 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load
Authors: R. Ziaie Moayed, E. Ghanbari Alamouty
Abstract:
Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.
Keywords: Area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8331632 Numerical Simulation of Progressive Collapse for a Reinforced Concrete Building
Authors: Han-Soo Kim, Jae-Gyun Ahn, Hyo-Seung Ahn
Abstract:
Though nonlinear dynamic analysis using a specialized hydro-code such as AUTODYN is accurate and useful tool for progressive collapse assessment of a multi-story building subjected to blast load, it takes too much time to be applied to a practical simulation of progressive collapse of a tall building. In this paper, blast analysis of a RC frame structure using a simplified model with Reinforcement Contact technique provided in Ansys Workbench was introduced and investigated on its accuracy. Even though the simplified model has a fraction of elements of the detailed model, the simplified model with this modeling technique shows similar structural behavior under the blast load to the detailed model. The proposed modeling method can be effectively applied to blast loading progressive collapse analysis of a RC frame structure.Keywords: Autodyn, Blast Load, Progressive Collapse, Reinforcement Contact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42651631 Development of an Artificial Ear for Bone-Conducted Objective Occlusion Measurement
Authors: Yu Luan
Abstract:
The bone-conducted objective occlusion effect (OE) is characterized by a discomforting sensation of fullness experienced in an occluded ear. This phenomenon arises from various external stimuli, such as human speech, chewing, and walking, which generate vibrations transmitted through the body to the ear canal walls. The bone-conducted OE occurs due to the pressure build-up inside the occluded ear caused by sound radiating into the ear canal cavity from its walls. In the hearing aid industry, artificial ears are utilized as a tool for developing hearing aids. However, the currently available commercial artificial ears primarily focus on pure acoustics measurements, neglecting the bone-conducted vibration aspect. This research endeavors to develop an artificial ear specifically designed for bone-conducted occlusion measurements. Finite Element Analysis (FEA) modeling has been employed to gain insights into the behavior of the artificial ear.
Keywords: Artificial ear, bone conducted vibration, occlusion measurement, Finite Element Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881630 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes
Authors: Aymen Laadhari
Abstract:
We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.Keywords: Finite element method, Newton method, level set, Navier-Stokes, inextensible membrane, liquid drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12951629 Modeling Residential Space Heating Energy for Romania
Authors: Ion Smeureanu, Adriana Reveiu, Marian Dardala, Titus Felix Furtuna, Roman Kanala
Abstract:
This paper proposes a linear model for optimizing domestic energy consumption in Romania. The particularity of the model is that it is putting in competition both tangible technologies and thermal insulation projects with different financing modes. The model is optimizing the energy system by minimizing the global discounted cost in household sector, by integrating residential lighting, space heating, hot water, combined space heating – hot water, as well as space cooling, in a monolithic model. Another demand sector included is the passenger transport. This paper focuses on space heating part, analyzing technical and economic issues related to investment decisions to envelope and insulate buildings, in order to minimize energy consumption.Keywords: Consumer behavior, energy modelling, Open Source Energy Modeling System (OSeMOSYS), MARKAL/TIMES Romanian energy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25581628 Modeling and Simulation of Ship Structures Using Finite Element Method
Authors: Javid Iqbal, Zhu Shifan
Abstract:
The development in the construction of unconventional ships and the implementation of lightweight materials have shown a large impulse towards finite element (FE) method, making it a general tool for ship design. This paper briefly presents the modeling and analysis techniques of ship structures using FE method for complex boundary conditions which are difficult to analyze by existing Ship Classification Societies rules. During operation, all ships experience complex loading conditions. These loads are general categories into thermal loads, linear static, dynamic and non-linear loads. General strength of the ship structure is analyzed using static FE analysis. FE method is also suitable to consider the local loads generated by ballast tanks and cargo in addition to hydrostatic and hydrodynamic loads. Vibration analysis of a ship structure and its components can be performed using FE method which helps in obtaining the dynamic stability of the ship. FE method has developed better techniques for calculation of natural frequencies and different mode shapes of ship structure to avoid resonance both globally and locally. There is a lot of development towards the ideal design in ship industry over the past few years for solving complex engineering problems by employing the data stored in the FE model. This paper provides an overview of ship modeling methodology for FE analysis and its general application. Historical background, the basic concept of FE, advantages, and disadvantages of FE analysis are also reported along with examples related to hull strength and structural components.
Keywords: Dynamic analysis, finite element methods, ship structure, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24671627 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production
Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17771626 A Statistical Approach for Predicting and Optimizing Depth of Cut in AWJ Machining for 6063-T6 Al Alloy
Authors: Farhad Kolahan, A. Hamid Khajavi
Abstract:
In this paper, a set of experimental data has been used to assess the influence of abrasive water jet (AWJ) process parameters in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. The effects of these input parameters are studied on depth of cut (h); one of most important characteristics of AWJ. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the AWJ process parameters. The objective is to determine a suitable set of process parameters that can produce a desired depth of cut, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.
Keywords: AWJ machining, Mathematical modeling, Simulated Annealing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17731625 Strategies for Developing e-LMS for Tanzania Secondary Schools
Authors: Ellen A. Kalinga, R. B. Bagile Burchard, Lena Trojer
Abstract:
Tanzania secondary schools in rural areas are geographically and socially isolated, hence face a number of problems in getting learning materials resulting in poor performance in National examinations. E-learning as defined to be the use of information and communication technology (ICT) for supporting the educational processes has motivated Tanzania to apply ICT in its education system. There has been effort to improve secondary school education using ICT through several projects. ICT for e-learning to Tanzania rural secondary school is one of the research projects conceived by the University of Dar-es-Salaam through its College of Engineering and Technology. The main objective of the project is to develop a tool to enable ICT support rural secondary school. The project is comprehensive with a number of components, one being development of e-learning management system (e-LMS) for Tanzania secondary schools. This paper presents strategies of developing e-LMS. It shows the importance of integrating action research methodology with the modeling methods as presented by model driven architecture (MDA) and the usefulness of Unified Modeling Language (UML) on the issue of modeling. The benefit of MDA will go along with the development based on software development life cycle (SDLC) process, from analysis and requirement phase through design and implementation stages as employed by object oriented system analysis and design approach. The paper also explains the employment of open source code reuse from open source learning platforms for the context sensitive development of the e-LMS for Tanzania secondary schools.
Keywords: Action Research Methodology, OOSA&D, MDA, UML, Open Source LMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22381624 Nonlinear Effects in Bubbly Liquid with Shock Waves
Authors: Raisa Kh. Bolotnova, Marat N. Galimzianov, Andrey S. Topolnikov, Uliana O. Agisheva, Valeria A. Buzina
Abstract:
The paper presents the results of theoretical and numerical modeling of propagation of shock waves in bubbly liquids related to nonlinear effects (realistic equation of state, chemical reactions, two-dimensional effects). On the basis on the Rankine- Hugoniot equations the problem of determination of parameters of passing and reflected shock waves in gas-liquid medium for isothermal, adiabatic and shock compression of the gas component is solved by using the wide-range equation of state of water in the analitic form. The phenomenon of shock wave intensification is investigated in the channel of variable cross section for the propagation of a shock wave in the liquid filled with bubbles containing chemically active gases. The results of modeling of the wave impulse impact on the solid wall covered with bubble layer are presented.Keywords: bubbly liquid, cavitation, equation of state, shock wave
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19931623 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems
Authors: Nyeng P. Gyang
Abstract:
Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.Keywords: Cloud computing systems, multicore systems, parallel delaunay triangulation, parallel surface modeling and generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8791622 Mathematical Modeling of Human Cardiovascular System: A Lumped Parameter Approach and Simulation
Authors: Ketan Naik, P. H. Bhathawala
Abstract:
The purpose of this work is to develop a mathematical model of Human Cardiovascular System using lumped parameter method. The model is divided in three parts: Systemic Circulation, Pulmonary Circulation and the Heart. The established mathematical model has been simulated by MATLAB software. The innovation of this study is in describing the system based on the vessel diameters and simulating mathematical equations with active electrical elements. Terminology of human physical body and required physical data like vessel’s radius, thickness etc., which are required to calculate circuit parameters like resistance, inductance and capacitance, are proceeds from well-known medical books. The developed model is useful to understand the anatomic of human cardiovascular system and related syndromes. The model is deal with vessel’s pressure and blood flow at certain time.Keywords: Cardiovascular system, lumped parameter method, mathematical modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33611621 Irreversibility and Electrochemical Modeling of GT-SOFC Hybrid System and Parametric Analysis on Performance of Fuel Cell
Authors: R. Mahjoub, K. Maghsoudi Mehraban
Abstract:
Since the heart of the hybrid system is the fuel cell and it has vital impact on efficiency and performance of cycle, in this study, the major modeling of electrochemical reaction within the fuel cell is analyzed. Also, solid oxide fuel cell is integrated with the gas turbine and thermodynamic analysis on different elements of hybrid system is applied. Next, in predefined operational points of hybrid cycle, the simulation results are obtained. Then, different source of irreversibility in fuel cell is modeled and influence of different major parameters on different irreversibility is computed and applied. Then, the effect of important parameters such as thickness and surface of electrolyte fuel cell are simulated in fuel cell and its dependency to these parameters is explained. At the end of the paper, different impact of parameters on fuel cell with a gas turbine and current density and voltage of fuel cell are simulated.Keywords: Electrochemical analysis, Gas turbine, Hybrid system, Irreversibility analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15091620 Investigation of the Effect of Cavitator Angle and Dimensions for a Supercavitating Vehicle
Authors: Sri Raman A., A.K.Ghosh
Abstract:
At very high speeds, bubbles form in the underwater vehicles because of sharp trailing edges or of places where the local pressure is lower than the vapor pressure. These bubbles are called cavities and the size of the cavities grows as the velocity increases. A properly designed cavitator can induce the formation of a single big cavity all over the vehicle. Such a vehicle travelling in the vaporous cavity is called a supercavitating vehicle and the present research work mainly focuses on the dynamic modeling of such vehicles. Cavitation of the fins is also accounted and the effect of the same on trajectory is well explained. The entire dynamics has been developed using the state space approach and emphasis is given on the effect of size and angle of attack of the cavitator. Control law has been established for the motion of the vehicle using Non-linear Dynamic Inverse (NDI) with cavitator as the control surface.
Keywords: High speed underwater vehicle, Non-Linear Dynamic Inverse (NDI), six-dof modeling, Supercavitation, Torpedo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715861619 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment
Authors: Leila Torkaman, Nasser Ghassembaglou
Abstract:
Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration, and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified; finally needed methods to optimize energy consumption and coolers’ classification are provided.
Keywords: Cooler, EER, Energy Label, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25671618 Preparation of Computer Model of the Aircraft for Numerical Aeroelasticity Tests – Flutter
Authors: M. Rychlik, R. Roszak, M. Morzynski, M. Nowak, H. Hausa, K. Kotecki
Abstract:
Article presents the geometry and structure reconstruction procedure of the aircraft model for flatter research (based on the I22-IRYDA aircraft). For reconstruction the Reverse Engineering techniques and advanced surface modeling CAD tools are used. Authors discuss all stages of data acquisition process, computation and analysis of measured data. For acquisition the three dimensional structured light scanner was used. In the further sections, details of reconstruction process are present. Geometry reconstruction procedure transform measured input data (points cloud) into the three dimensional parametric computer model (NURBS solid model) which is compatible with CAD systems. Parallel to the geometry of the aircraft, the internal structure (structural model) are extracted and modeled. In last chapter the evaluation of obtained models are discussed.Keywords: computer modeling, numerical simulation, Reverse Engineering, structural model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17581617 Subcritical Water Extraction of Mannitol from Olive Leaves
Authors: S. M. Ghoreishi, R. Gholami Shahrestani, S. H. Ghaziaskar
Abstract:
Subcritical water extraction was investigated as a novel and alternative technology in the food and pharmaceutical industry for the separation of Mannitol from olive leaves and its results was compared with those of Soxhlet extraction. The effects of temperature, pressure, and flow rate of water and also momentum and mass transfer dimensionless variables such as Reynolds and Peclet Numbers on extraction yield and equilibrium partition coefficient were investigated. The 30-110 bars, 60-150°C, and flow rates of 0.2-2 mL/min were the water operating conditions. The results revealed that the highest Mannitol yield was obtained at 100°C and 50 bars. However, extraction of Mannitol was not influenced by the variations of flow rate. The mathematical modeling of experimental measurements was also investigated and the model is capable of predicting the experimental measurements very well. In addition, the results indicated higher extraction yield for the subcritical water extraction in contrast to Soxhlet method.Keywords: Extraction, Mannitol, Modeling, Olive leaves, Soxhlet extraction, Subcritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30661616 Modeling and Simulation of Overcurrent and Earth Fault Relay with Inverse Definite Minimum Time
Authors: Win Win Tun, Han Su Yin, Ohn Zin Lin
Abstract:
Transmission networks are an important part of an electric power system. The transmission lines not only have high power transmission capacity but also they are prone of larger magnitudes. Different types of faults occur in transmission lines such as single line to ground (L-G) fault, double line to ground (L-L-G) fault, line to line (L-L) fault and three phases (L-L-L) fault. These faults are needed to be cleared quickly in order to reduce damage caused to the system and they have high impact on the electrical power system equipment’s which are connected in transmission line. The main fault in transmission line is L-G fault. Therefore, protection relays are needed to protect transmission line. Overcurrent and earth fault relay is an important relay used to protect transmission lines, distribution feeders, transformers and bus couplers etc. Sometimes these relays can be used as main protection or backup protection. The modeling of protection relays is important to indicate the effects of network parameters and configurations on the operation of relays. Therefore, the modeling of overcurrent and earth fault relay is described in this paper. The overcurrent and earth fault relays with standard inverse definite minimum time are modeled and simulated by using MATLAB/Simulink software. The developed model was tested with L-G, L-L-G, L-L and L-L-L faults with various fault locations and fault resistance (0.001Ω). The simulation results are obtained by MATLAB software which shows the feasibility of analysis of transmission line protection with overcurrent and earth fault relay.
Keywords: Transmission line, overcurrent and earth fault relay, standard inverse definite minimum time, various faults, MATLAB Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9941615 Modeling and Performance Evaluation of LTE Networks with Different TCP Variants
Authors: Ghassan A. Abed, Mahamod Ismail, Kasmiran Jumari
Abstract:
Long Term Evolution (LTE) is a 4G wireless broadband technology developed by the Third Generation Partnership Project (3GPP) release 8, and it's represent the competitiveness of Universal Mobile Telecommunications System (UMTS) for the next 10 years and beyond. The concepts for LTE systems have been introduced in 3GPP release 8, with objective of high-data-rate, low-latency and packet-optimized radio access technology. In this paper, performance of different TCP variants during LTE network investigated. The performance of TCP over LTE is affected mostly by the links of the wired network and total bandwidth available at the serving base station. This paper describes an NS-2 based simulation analysis of TCP-Vegas, TCP-Tahoe, TCPReno, TCP-Newreno, TCP-SACK, and TCP-FACK, with full modeling of all traffics of LTE system. The Evaluation of the network performance with all TCP variants is mainly based on throughput, average delay and lost packet. The analysis of TCP performance over LTE ensures that all TCP's have a similar throughput and the best performance return to TCP-Vegas than other variants.Keywords: LTE; EUTRAN; 3GPPP, SAE; TCP Variants; NS-2
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32761614 Modeling, Simulation and Monitoring of Nuclear Reactor Using Directed Graph and Bond Graph
Authors: A. Badoud, M. Khemliche, S. Latreche
Abstract:
The main objective developed in this paper is to find a graphic technique for modeling, simulation and diagnosis of the industrial systems. This importance is much apparent when it is about a complex system such as the nuclear reactor with pressurized water of several form with various several non-linearity and time scales. In this case the analytical approach is heavy and does not give a fast idea on the evolution of the system. The tool Bond Graph enabled us to transform the analytical model into graphic model and the software of simulation SYMBOLS 2000 specific to the Bond Graphs made it possible to validate and have the results given by the technical specifications. We introduce the analysis of the problem involved in the faults localization and identification in the complex industrial processes. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new diagnosis approaches to the complex system control. The industrial systems became increasingly complex with the faults diagnosis procedures in the physical systems prove to become very complex as soon as the systems considered are not elementary any more. Indeed, in front of this complexity, we chose to make recourse to Fault Detection and Isolation method (FDI) by the analysis of the problem of its control and to conceive a reliable system of diagnosis making it possible to apprehend the complex dynamic systems spatially distributed applied to the standard pressurized water nuclear reactor.Keywords: Bond Graph, Modeling, Simulation, Monitoring, Analytical Redundancy Relations, Pressurized Water Reactor, Directed Graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978