Search results for: Finite Klingenberg plane
1389 A Nonconforming Mixed Finite Element Method for Semilinear Pseudo-Hyperbolic Partial Integro-Differential Equations
Authors: Jingbo Yang, Hong Li, Yang Liu, Siriguleng He
Abstract:
In this paper, a nonconforming mixed finite element method is studied for semilinear pseudo-hyperbolic partial integrodifferential equations. By use of the interpolation technique instead of the generalized elliptic projection, the optimal error estimates of the corresponding unknown function are given.
Keywords: Pseudo-hyperbolic partial integro-differential equations, Nonconforming mixed element method, Semilinear, Error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16411388 Progressive Collapse of Hyperbolic Cooling Tower Considering the Support Inclinations
Authors: Esmaeil Asadzadeh, Mehtab Alam
Abstract:
Progressive collapse of the layered hyperbolic tower shells are studied considering the influences of changes in the supporting columns’ types and angles. 3-D time history analyses employing the finite element method are performed for the towers supported with I-type and ᴧ-type column. It is found that the inclination angle of the supporting columns is a very important parameter in optimization and safe design of the cooling towers against the progressive collapse. It is also concluded that use of Demand Capacity Ratio (DCR) criteria of the linear elastic approach recommended by GSA is un-conservative for the hyperbolic tower shells.
Keywords: Progressive collapse, cooling towers, finite element analysis, crack generation, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13601387 Modeling and Analysis of the Effects of Nephrolithiasis in Kidney Using a Computational Tactile Sensing Approach
Authors: Elnaz Afshari, Siamak Najarian
Abstract:
Having considered tactile sensing and palpation of a surgeon in order to detect kidney stone during open surgery; we present the 2D model of nephrolithiasis (two dimensional model of kidney containing a simulated stone). The effects of stone existence that appear on the surface of kidney (because of exerting mechanical load) are determined. Using Finite element method, it is illustrated that the created stress patterns on the surface of kidney and stress graphs not only show existence of stone inside kidney, but also show its exact location.Keywords: Nephrolithiasis, Minimally Invasive Surgery, Artificial Tactile Sensing, Finite Element Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13631386 Selection the Optimum Cooling Scheme for Generators based on the Electro-Thermal Analysis
Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi
Abstract:
Optimal selection of electrical insulations in electrical machinery insures reliability during operation. From the insulation studies of view for electrical machines, stator is the most important part. This fact reveals the requirement for inspection of the electrical machine insulation along with the electro-thermal stresses. In the first step of the study, a part of the whole structure of machine in which covers the general characteristics of the machine is chosen, then based on the electromagnetic analysis (finite element method), the machine operation is simulated. In the simulation results, the temperature distribution of the total structure is presented simultaneously by using electro-thermal analysis. The results of electro-thermal analysis can be used for designing an optimal cooling system. In order to design, review and comparing the cooling systems, four wiring structures in the slots of Stator are presented. The structures are compared to each other in terms of electrical, thermal distribution and remaining life of insulation by using Finite Element analysis. According to the steps of the study, an optimization algorithm has been presented for selection of appropriate structure.Keywords: Electrical field, field distribution, insulation, winding, finite element method, electro thermal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501385 Effects of Temperature-Dependent Material Properties on Stress and Temperature in Cracked Metal Plate under Electric Current Load
Authors: Thomas Jin-Chee Liu
Abstract:
Using the finite element analyses, this paper discusses the effects of temperature-dependent material properties on the stress and temperature fields in a cracked metal plate under the electric current load. The practical and complicated results are obtained when the temperature-dependent material properties are adopted in the analysis. If the simplified (temperature-independent) material properties are used, incorrect results will be obtained.
Keywords: Joule heating, temperature-dependent, crack tip, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20051384 Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field
Authors: Zone-Ching Lin, Meng-Hua Lin, Ying-Chih Hsu
Abstract:
This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.
Keywords: Quasi-steady molecular statics, Nanoscale orthogonal cutting, Finite difference, Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19361383 Effect of Mechanical Loading on the Delamination of Stratified Composite in Mode I
Authors: H. Achache, Y. Madani, A. Benzerdjeb
Abstract:
The present study is based on the three-dimensional digital analysis by the finite elements method of the mechanical loading effect on the delamination of unidirectional and multidirectional stratified composites. The aim of this work is the determination of the release energy rate G in mode I and the Von Mises equivalent constraint distribution along the damaged area under the influence of several parameters such as the applied load and the delamination size. The results obtained in this study show that the unidirectional composite laminates have better mechanical resistance one the loading line than the multidirectional composite laminates.Keywords: Delamination, release energy rate, stratified composite, finite element method and ply.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13711382 The Elliptic Curves y2 = x3 - t2x over Fp
Authors: Ahmet Tekcan
Abstract:
Let p be a prime number, Fp be a finite field and t ∈ F*p= Fp- {0}. In this paper we obtain some properties of ellipticcurves Ep,t: y2= y2= x3- t2x over Fp. In the first sectionwe give some notations and preliminaries from elliptic curves. In the second section we consider the rational points (x, y) on Ep,t. Wegive a formula for the number of rational points on Ep,t over Fnp for an integer n ≥ 1. We also give some formulas for the sum of x?andy?coordinates of the points (x, y) on Ep,t. In the third section weconsider the rank of Et: y2= x3- t2x and its 2-isogenous curve Et over Q. We proved that the rank of Etand Etis 2 over Q. In the last section we obtain some formulas for the sums Σt∈F?panp,t for an integer n ≥ 1, where ap,t denote the trace of Frobenius.
Keywords: Elliptic curves over finite fields, rational points onelliptic curves, rank, trace of Frobenius.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20331381 Maximum Norm Analysis of a Nonmatching Grids Method for Nonlinear Elliptic Boundary Value Problem −Δu = f(u)
Authors: Abida Harbi
Abstract:
We provide a maximum norm analysis of a finite element Schwarz alternating method for a nonlinear elliptic boundary value problem of the form -Δu = f(u), on two overlapping sub domains with non matching grids. We consider a domain which is the union of two overlapping sub domains where each sub domain has its own independently generated grid. The two meshes being mutually independent on the overlap region, a triangle belonging to one triangulation does not necessarily belong to the other one. Under a Lipschitz assumption on the nonlinearity, we establish, on each sub domain, an optimal L∞ error estimate between the discrete Schwarz sequence and the exact solution of the boundary value problem.Keywords: Error estimates, Finite elements, Nonlinear PDEs, Schwarz method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27571380 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.
Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15701379 Numerical and Experimental Studies of Joule Heating Effects around Crack and Notch Tips
Authors: Thomas Jin-Chee Liu, Ji-Fu Tseng, Yu-Shen Chen
Abstract:
This paper investigates the thermo-electric effects around the crack and notch tips under the electric current load. The research methods include the finite element analysis and thermal imaging experiment. The finite element solutions show that the electric current density field concentrates at the crack tip. Due to the Joule heating, this electric concentration causes the hot spot at the tip zone. From numerical and experimental results, this hot spot is identified. The temperature of the hot spot is affected by the electric load, operation time and geometry of the sample.Keywords: Thermo-electric, Joule heating, crack tip, notch tip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14621378 Optimum Design of an 8x8 Optical Switch with Thermal Compensated Mechanisms
Authors: Tien-Tung Chung, Chin-Te Lin, Chung-Yun Lee, Kuang-Chao Fan, Shou-Heng Chen
Abstract:
This paper studies the optimum design for reducing optical loss of an 8x8 mechanical type optical switch due to the temperature change. The 8x8 optical switch is composed of a base, 8 input fibers, 8 output fibers, 3 fixed mirrors and 17 movable mirrors. First, an innovative switch configuration is proposed with thermal-compensated design. Most mechanical type optical switches have a disadvantage that their precision and accuracy are influenced by the ambient temperature. Therefore, the thermal-compensated design is to deal with this situation by using materials with different thermal expansion coefficients (α). Second, a parametric modeling program is developed to generate solid models for finite element analysis, and the thermal and structural behaviors of the switch are analyzed. Finally, an integrated optimum design program, combining Autodesk Inventor Professional software, finite element analysis software, and genetic algorithms, is developed for improving the thermal behaviors that the optical loss of the switch is reduced. By changing design parameters of the switch in the integrated design program, the final optimum design that satisfies the design constraints and specifications can be found.Keywords: Optical switch, finite element analysis, thermal-compensated design, optimum design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15491377 Vortex Formation in Lid-driven Cavity with Disturbance Block
Authors: Maysam Saidi, Hassan Basirat Tabrizi, Reza Maddahian
Abstract:
In this paper, numerical simulations are performed to investigate the effect of disturbance block on flow field of the classical square lid-driven cavity. Attentions are focused on vortex formation and studying the effect of block position on its structure. Corner vortices are different upon block position and new vortices are produced because of the block. Finite volume method is used to solve Navier-Stokes equations and PISO algorithm is employed for the linkage of velocity and pressure. Verification and grid independency of results are reported. Stream lines are sketched to visualize vortex structure in different block positions.
Keywords: Disturbance Block, Finite Volume Method, Lid-Driven Cavity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18681376 Stress Analysis of Water Wall Tubes of a Coal-fired Boiler during Soot Blowing Operation
Authors: Pratch Kittipongpattana, Thongchai Fongsamootr
Abstract:
This research aimed to study the influences of a soot blowing operation and geometrical variables to the stress characteristic of water wall tubes located in soot blowing areas which caused the boilers of Mae Moh power plant to lose their generation hour. The research method is divided into 2 parts (a) measuring the strain on water wall tubes by using 3-element rosette strain gages orientation during a full capacity plant operation and in periods of soot blowing operations (b) creating a finite element model in order to calculate stresses on tubes and validating the model by using experimental data in a steady state plant operation. Then, the geometrical variables in the model were changed to study stresses on the tubes. The results revealed that the stress was not affected by the soot blowing process and the finite element model gave the results 1.24% errors from the experiment. The geometrical variables influenced the stress, with the most optimum tubes design in this research reduced the average stress from the present design 31.28%.
Keywords: Boiler water wall tube, Finite element, Stress analysis, Strain gage rosette.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18461375 Group Velocity Dispersion Management of Microstructure Optical Fibers
Authors: S. M. Abdur Razzak, M. A. Rashid, Y. Namihira, A. Sayeem
Abstract:
A simple microstructure optical fiber design based on an octagonal cladding structure is presented for simultaneously controlling dispersion and leakage properties. The finite difference method with anisotropic perfectly matched boundary layer is used to investigate the guiding properties. It is demonstrated that octagonal photonic crystal fibers with four rings can assume negative ultra-flattened dispersion of -19 + 0.23 ps/nm/km in the wavelength range of 1.275 μm to 1.68 μm, nearly zero ultra-flattened dispersion of 0 ± 0.40 ps/nm/km in a 1.38 to 1.64 μm, and low confinement losses less than 10-3 dB/km in the entire band of interest.
Keywords: Finite difference modeling, group velocity dispersion, optical fiber design, photonic crystal fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18221374 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.Keywords: Smart structure, Euler-Bernoulli beam theory, Fastoutput sampling feedback control, Finite Element Method, Statespace model, Vibration control, LMI, Model order Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17531373 Finite Volume Model to Study the Effect of Buffer on Cytosolic Ca2+ Advection Diffusion
Authors: Brajesh Kumar Jha, Neeru Adlakha, M. N. Mehta
Abstract:
Calcium [Ca2+] is an important second messenger which plays an important role in signal transduction. There are several parameters that affect its concentration profile like buffer source etc. The effect of stationary immobile buffer on Ca2+ concentration has been incorporated which is a very important parameter needed to be taken into account in order to make the model more realistic. Interdependence of all the important parameters like diffusion coefficient and influx over [Ca2+] profile has been studied. Model is developed in the form of advection diffusion equation together with buffer concentration. A program has been developed using finite volume method for the entire problem and simulated on an AMD-Turion 32-bit machine to compute the numerical results.Keywords: Ca2+ profile, buffer, Astrocytes, Advection diffusion, FVM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16711372 Dynamic Variational Multiscale LES of Bluff Body Flows on Unstructured Grids
Authors: Carine Moussaed, Stephen Wornom, Bruno Koobus, Maria Vittoria Salvetti, Alain Dervieux,
Abstract:
The effects of dynamic subgrid scale (SGS) models are investigated in variational multiscale (VMS) LES simulations of bluff body flows. The spatial discretization is based on a mixed finite element/finite volume formulation on unstructured grids. In the VMS approach used in this work, the separation between the largest and the smallest resolved scales is obtained through a variational projection operator and a finite volume cell agglomeration. The dynamic version of Smagorinsky and WALE SGS models are used to account for the effects of the unresolved scales. In the VMS approach, these effects are only modeled in the smallest resolved scales. The dynamic VMS-LES approach is applied to the simulation of the flow around a circular cylinder at Reynolds numbers 3900 and 20000 and to the flow around a square cylinder at Reynolds numbers 22000 and 175000. It is observed as in previous studies that the dynamic SGS procedure has a smaller impact on the results within the VMS approach than in LES. But improvements are demonstrated for important feature like recirculating part of the flow. The global prediction is improved for a small computational extra cost.Keywords: variational multiscale LES, dynamic SGS model, unstructured grids, circular cylinder, square cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18271371 Group Invariant Solutions for Radial Jet Having Finite Fluid Velocity at Orifice
Abstract:
The group invariant solution for Prandtl-s boundary layer equations for an incompressible fluid governing the flow in radial free, wall and liquid jets having finite fluid velocity at the orifice are investigated. For each jet a symmetry is associated with the conserved vector that was used to derive the conserved quantity for the jet elsewhere. This symmetry is then used to construct the group invariant solution for the third-order partial differential equation for the stream function. The general form of the group invariant solution for radial jet flows is derived. The general form of group invariant solution and the general form of the similarity solution which was obtained elsewhere are the same.
Keywords: Two-dimensional jets, radial jets, group invariant solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14591370 New Moment Rotation Model of Single Web Angle Connections
Authors: Zhengyi Kong, Seung-Eock Kim
Abstract:
Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate their moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The identical geometric and material conditions with Lipson’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range of mechanism, simpler and more accurate hyperbolic function models are proposed.Keywords: Single-web angle connections, finite element method, moment and rotation, hyperbolic function models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22961369 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable
Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri
Abstract:
This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.
Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26211368 Three Dimensional Finite Element Analysis of Functionally Graded Radiation Shielding Nanoengineered Sandwich Composites
Authors: Nasim Abuali Galehdari, Thomas J. Ryan, Ajit D. Kelkar
Abstract:
In recent years, nanotechnology has played an important role in the design of an efficient radiation shielding polymeric composites. It is well known that, high loading of nanomaterials with radiation absorption properties can enhance the radiation attenuation efficiency of shielding structures. However, due to difficulties in dispersion of nanomaterials into polymer matrices, there has been a limitation in higher loading percentages of nanoparticles in the polymer matrix. Therefore, the objective of the present work is to provide a methodology to fabricate and then to characterize the functionally graded radiation shielding structures, which can provide an efficient radiation absorption property along with good structural integrity. Sandwich structures composed of Ultra High Molecular Weight Polyethylene (UHMWPE) fabric as face sheets and functionally graded epoxy nanocomposite as core material were fabricated. A method to fabricate a functionally graded core panel with controllable gradient dispersion of nanoparticles is discussed. In order to optimize the design of functionally graded sandwich composites and to analyze the stress distribution throughout the sandwich composite thickness, a finite element method was used. The sandwich panels were discretized using 3-Dimensional 8 nodded brick elements. Classical laminate analysis in conjunction with simplified micromechanics equations were used to obtain the properties of the face sheets. The presented finite element model would provide insight into deformation and damage mechanics of the functionally graded sandwich composites from the structural point of view.
Keywords: Nanotechnology, functionally graded material, radiation shielding, sandwich composites, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12711367 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels
Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge
Abstract:
An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three dimensional finite element models in assessing debonding damage in composite sandwich panels.Keywords: Debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20171366 A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems
Authors: P I Jagad, B P Puranik, A W Date
Abstract:
Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved.Keywords: Finite volume method, flow induced stresses, fluidstructureinteraction, unstructured meshes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18901365 Elastic-Plastic Contact Analysis of Single Layer Solid Rough Surface Model using FEM
Authors: A. Megalingam, M.M.Mayuram
Abstract:
Evaluation of contact pressure, surface and subsurface contact stresses are essential to know the functional response of surface coatings and the contact behavior mainly depends on surface roughness, material property, thickness of layer and the manner of loading. Contact parameter evaluation of real rough surface contacts mostly relies on statistical single asperity contact approaches. In this work, a three dimensional layered solid rough surface in contact with a rigid flat is modeled and analyzed using finite element method. The rough surface of layered solid is generated by FFT approach. The generated rough surface is exported to a finite element method based ANSYS package through which the bottom up solid modeling is employed to create a deformable solid model with a layered solid rough surface on top. The discretization and contact analysis are carried by using the same ANSYS package. The elastic, elastoplastic and plastic deformations are continuous in the present finite element method unlike many other contact models. The Young-s modulus to yield strength ratio of layer is varied in the present work to observe the contact parameters effect while keeping the surface roughness and substrate material properties as constant. The contacting asperities attain elastic, elastoplastic and plastic states with their continuity and asperity interaction phenomena is inherently included. The resultant contact parameters show that neighboring asperity interaction and the Young-s modulus to yield strength ratio of layer influence the bulk deformation consequently affect the interface strength.Keywords: Asperity interaction, finite element method, rough surface contact, single layered solid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27371364 Some Relationships between Classes of Reverse Watson-Crick Finite Automata
Authors: Kazuki Murakami, Takashige Nakamura, Noriko Sakamoto, Kunio Aizawa
Abstract:
A Watson-Crick automaton is recently introduced as a computational model of DNA computing framework. It works on tapes consisting of double stranded sequences of symbols. Symbols placed on the corresponding cells of the double-stranded sequences are related by a complimentary relation. In this paper, we investigate a variation of Watson-Crick automata in which both heads read the tape in reverse directions. They are called reverse Watson-Crick finite automata (RWKFA). We show that all of following four classes, i.e., simple, 1-limited, all-final, all-final and simple, are equal to non-restricted version of RWKFA.Keywords: automaton, DNA computing, formal languages, Watson-Crick automaton
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181363 Determination of Stress Concentration Factors of a Steam Turbine Rotor by FEA
Authors: R. Nagendra Babu, K. V. Ramana, K. Mallikarjuna Rao
Abstract:
Stress Concentration Factors are significant in machine design as it gives rise to localized stress when any change in the design of surface or abrupt change in the cross section occurs. Almost all machine components and structural members contain some form of geometrical or microstructural discontinuities. These discontinuities are very dangerous and lead to failure. So, it is very much essential to analyze the stress concentration factors for critical applications like Turbine Rotors. In this paper Finite Element Analysis (FEA) with extremely fine mesh in the vicinity of the blades of Steam Turbine Rotor is applied to determine stress concentration factors. A model of Steam Turbine Rotor is shown in Fig. 1.Keywords: Stress Concentration Factors, Finite Element Analysis, and ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32661362 Energy Based Temperature Profile for Heat Transfer Analysis of Concrete Section Exposed to Fire on One Side
Authors: Pattamad Panedpojaman
Abstract:
For fire safety purposes, the fire resistance and the structural behavior of reinforced concrete members are assessed to satisfy specific fire performance criteria. The available prescribed provisions are based on standard fire load. Under various fire scenarios, engineers are in need of both heat transfer analysis and structural analysis. For heat transfer analysis, the study proposed a modified finite difference method to evaluate the temperature profile within a cross section. The research conducted is limited to concrete sections exposed to a fire on their one side. The method is based on the energy conservation principle and a pre-determined power function of the temperature profile. The power value of 2.7 is found to be a suitable value for concrete sections. The temperature profiles of the proposed method are only slightly deviate from those of the experiment, the FEM and the FDM for various fire loads such as ASTM E 119, ASTM 1529, BS EN 1991-1-2 and 550 oC. The proposed method is useful to avoid incontinence of the large matrix system of the typical finite difference method to solve the temperature profile. Furthermore, design engineers can simply apply the proposed method in regular spreadsheet software.Keywords: temperature profile, finite difference method, concrete section, one-side fire exposed, energy conservation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20771361 Modified Plastic-Damage Model for Fiber Reinforced Polymer-Confined Repaired Concrete Columns
Authors: I. A Tijani, Y. F Wu, C.W. Lim
Abstract:
Concrete Damaged Plasticity Model (CDPM) is capable of modeling the stress-strain behavior of confined concrete. Nevertheless, the accuracy of the model largely depends on its parameters. To date, most research works mainly focus on the identification and modification of the parameters for fiber reinforced polymer (FRP) confined concrete prior to damage. And, it has been established that the FRP-strengthened concrete behaves differently to FRP-repaired concrete. This paper presents a modified plastic damage model within the context of the CDPM in ABAQUS for modelling of a uniformly FRP-confined repaired concrete under monotonic loading. The proposed model includes infliction damage, elastic stiffness, yield criterion and strain hardening rule. The distinct feature of damaged concrete is elastic stiffness reduction; this is included in the model. Meanwhile, the test results were obtained from a physical testing of repaired concrete. The dilation model is expressed as a function of the lateral stiffness of the FRP-jacket. The finite element predictions are shown to be in close agreement with the obtained test results of the repaired concrete. It was observed from the study that with necessary modifications, finite element method is capable of modeling FRP-repaired concrete structures.
Keywords: Concrete, FRP, damage, repairing, plasticity, and finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9281360 Finite Difference Method of the Seismic Analysis of Earth Dam
Authors: Alaoua Bouaicha, Fahim Kahlouche, Abdelhamid Benouali
Abstract:
Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement.Keywords: Earthquake, numerical analysis, FLAC2D, displacement, Embankment Dam, pore water pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452