Search results for: Capturing multi-view images
869 Automatic 2D/2D Registration using Multiresolution Pyramid based Mutual Information in Image Guided Radiation Therapy
Authors: Jing Jia, Shanqing Huang, Fang Liu, Qiang Ren, Gui Li, Mengyun Cheng, Chufeng Jin, Yican Wu
Abstract:
Medical image registration is the key technology in image guided radiation therapy (IGRT) systems. On the basis of the previous work on our IGRT prototype with a biorthogonal x-ray imaging system, we described a method focused on the 2D/2D rigid-body registration using multiresolution pyramid based mutual information in this paper. Three key steps were involved in the method : firstly, four 2D images were obtained including two x-ray projection images and two digital reconstructed radiographies(DRRs ) as the input for the registration ; Secondly, each pair of the corresponding x-ray image and DRR image were matched using multiresolution pyramid based mutual information under the ITK registration framework ; Thirdly, we got the final couch offset through a coordinate transformation by calculating the translations acquired from the two pairs of the images. A simulation example of a parotid gland tumor case and a clinical example of an anthropomorphic head phantom were employed in the verification tests. In addition, the influence of different CT slice thickness were tested. The simulation results showed that the positioning errors were 0.068±0.070, 0.072±0.098, 0.154±0.176mm along three axes which were lateral, longitudinal and vertical. The clinical test indicated that the positioning errors of the planned isocenter were 0.066, 0.07, 2.06mm on average with a CT slice thickness of 2.5mm. It can be concluded that our method with its verified accuracy and robustness can be effectively used in IGRT systems for patient setup.
Keywords: 2D/2D registration, image guided radiation therapy, multi resolution pyramid, mutual information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982868 Utilizing the Principal Component Analysis on Multispectral Aerial Imagery for Identification of Underlying Structures
Authors: M. Bosques-Perez, W. Izquierdo, H. Martin, L. Deng, J. Rodriguez, T. Yan, M. Cabrerizo, A. Barreto, N. Rishe, M. Adjouadi
Abstract:
Aerial imagery is a powerful tool when it comes to analyzing temporal changes in ecosystems and extracting valuable information from the observed scene. It allows us to identify and assess various elements such as objects, structures, textures, waterways, and shadows. To extract meaningful information, multispectral cameras capture data across different wavelength bands of the electromagnetic spectrum. In this study, the collected multispectral aerial images were subjected to principal component analysis (PCA) to identify independent and uncorrelated components or features that extend beyond the visible spectrum captured in standard RGB images. The results demonstrate that these principal components contain unique characteristics specific to certain wavebands, enabling effective object identification and image segmentation.
Keywords: Big data, image processing, multispectral, principal component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95867 No-Reference Image Quality Assessment using Blur and Noise
Authors: Min Goo Choi, Jung Hoon Jung, Jae Wook Jeon
Abstract:
Assessment for image quality traditionally needs its original image as a reference. The conventional method for assessment like Mean Square Error (MSE) or Peak Signal to Noise Ratio (PSNR) is invalid when there is no reference. In this paper, we present a new No-Reference (NR) assessment of image quality using blur and noise. The recent camera applications provide high quality images by help of digital Image Signal Processor (ISP). Since the images taken by the high performance of digital camera have few blocking and ringing artifacts, we only focus on the blur and noise for predicting the objective image quality. The experimental results show that the proposed assessment method gives high correlation with subjective Difference Mean Opinion Score (DMOS). Furthermore, the proposed method provides very low computational load in spatial domain and similar extraction of characteristics to human perceptional assessment.Keywords: No Reference, Image Quality Assessment, blur, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3879866 Contrast Enhancement of Masses in Mammograms Using Multiscale Morphology
Authors: Amit Kamra, V. K. Jain, Pragya
Abstract:
Mammography is widely used technique for breast cancer screening. There are various other techniques for breast cancer screening but mammography is the most reliable and effective technique. The images obtained through mammography are of low contrast which causes problem for the radiologists to interpret. Hence, a high quality image is mandatory for the processing of the image for extracting any kind of information from it. Many contrast enhancement algorithms have been developed over the years. In the present work, an efficient morphology based technique is proposed for contrast enhancement of masses in mammographic images. The proposed method is based on Multiscale Morphology and it takes into consideration the scale of the structuring element. The proposed method is compared with other stateof- the-art techniques. The experimental results show that the proposed method is better both qualitatively and quantitatively than the other standard contrast enhancement techniques.Keywords: Enhancement, mammography, multi-scale, mathematical morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259865 Mobile to Server Face Recognition: A System Overview
Authors: Nurulhuda Ismail, Mas Idayu Md. Sabri
Abstract:
This paper presents a system overview of Mobile to Server Face Recognition, which is a face recognition application developed specifically for mobile phones. Images taken from mobile phone cameras lack of quality due to the low resolution of the cameras. Thus, a prototype is developed to experiment the chosen method. However, this paper shows a result of system backbone without the face recognition functionality. The result demonstrated in this paper indicates that the interaction between mobile phones and server is successfully working. The result shown before the database is completely ready. The system testing is currently going on using real images and a mock-up database to test the functionality of the face recognition algorithm used in this system. An overview of the whole system including screenshots and system flow-chart are presented in this paper. This paper also presents the inspiration or motivation and the justification in developing this system.
Keywords: Mobile to server, face recognition, system overview.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426864 Diasporic Discourse and Body Codes:Transnational Identities in Three Representative Chinese-French Artists
Authors: Wen-Hui Chang
Abstract:
This paper focuses upon three such painters working in France from this time and their representations both of their host country in which they found themselves displaced, and of their homeland which they represent through refracted memories from their new perspective in Europe. What is their representation of France and China´╝ÅTaiwan? Is it Otherness or an origin? This paper also attempts to explore the three artists- diasporic lives and to redefine their transnational identities. Hou Chin-lang, the significance of his multiple-split images serve to highlight the intricate relationships between his work and the surrounding family, and to reveal his identity of his Taiwan “homeland". Yin Xin takes paintings from the Western canon and subjects them to a process of transformation through Chinese imagery. In the same period, Lin Li-ling, transforms the transnational spirit of Yin Xin to symbolic codes with neutered female bodies and tatoos, thus creates images that challenge the boundaries of both gender and nationality.Keywords: Body Codes, Chinese French, Diasporic Discourse, Identity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402863 Fusion of Shape and Texture for Unconstrained Periocular Authentication
Authors: D. R. Ambika, K. R. Radhika, D. Seshachalam
Abstract:
Unconstrained authentication is an important component for personal automated systems and human-computer interfaces. Existing solutions mostly use face as the primary object of analysis. The performance of face-based systems is largely determined by the extent of deformation caused in the facial region and amount of useful information available in occluded face images. Periocular region is a useful portion of face with discriminative ability coupled with resistance to deformation. A reliable portion of periocular area is available for occluded images. The present work demonstrates that joint representation of periocular texture and periocular structure provides an effective expression and poses invariant representation. The proposed methodology provides an effective and compact description of periocular texture and shape. The method is tested over four benchmark datasets exhibiting varied acquisition conditions.
Keywords: Periocular authentication, Zernike moments, LBPV, shape and texture fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942862 Predicting Individual Investors- Intention to Invest: An Experimental Analysis of Attitude as a Mediator
Authors: Azwadi Ali
Abstract:
The survival of publicly listed companies largely depends on their stocks being liquidly traded. This goal can be achieved when new investors are attracted to invest on companies- stocks. Among different groups of investors, individual investors are generally less able to objectively evaluate companies- risks and returns, and tend to be emotionally biased in their investing decisions. Therefore their decisions may be formed as a result of perceived risks and returns, and influenced by companies- images. This study finds that perceived risk, perceived returns and trust directly affect individual investors- trading decisions while attitude towards brand partially mediates the relationships. This finding suggests that, in courting individual investors, companies still need to perform financially while building a good image can result in their stocks being accepted quicker than the stocks of good performing companies with hidden images.Keywords: Behavioral Finance, Investment, Attitude towardsBrand, Partial Least Squares
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3603861 Wavelet-Based Despeckling of Synthetic Aperture Radar Images Using Adaptive and Mean Filters
Authors: Syed Musharaf Ali, Muhammad Younus Javed, Naveed Sarfraz Khattak
Abstract:
In this paper we introduced new wavelet based algorithm for speckle reduction of synthetic aperture radar images, which uses combination of undecimated wavelet transformation, wiener filter (which is an adaptive filter) and mean filter. Further more instead of using existing thresholding techniques such as sure shrinkage, Bayesian shrinkage, universal thresholding, normal thresholding, visu thresholding, soft and hard thresholding, we use brute force thresholding, which iteratively run the whole algorithm for each possible candidate value of threshold and saves each result in array and finally selects the value for threshold that gives best possible results. That is why it is slow as compared to existing thresholding techniques but gives best results under the given algorithm for speckle reduction.
Keywords: Brute force thresholding, directional smoothing, direction dependent mask, undecimated wavelet transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880860 Elimination Noise by Adaptive Wavelet Threshold
Authors: Iman Elyasi, Sadegh Zarmehi
Abstract:
Due to some reasons, observed images are degraded which are mainly caused by noise. Recently image denoising using the wavelet transform has been attracting much attention. Waveletbased approach provides a particularly useful method for image denoising when the preservation of edges in the scene is of importance because the local adaptivity is based explicitly on the values of the wavelet detail coefficients. In this paper, we propose several methods of noise removal from degraded images with Gaussian noise by using adaptive wavelet threshold (Bayes Shrink, Modified Bayes Shrink and Normal Shrink). The proposed thresholds are simple and adaptive to each subband because the parameters required for estimating the threshold depend on subband data. Experimental results show that the proposed thresholds remove noise significantly and preserve the edges in the scene.
Keywords: Image denoising, Bayes Shrink, Modified Bayes Shrink, Normal Shrink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473859 Multichannel Image Mosaicing of Stem Cells
Authors: Alessandro Bevilacqua, Alessandro Gherardi, Filippo Piccinini
Abstract:
Image mosaicing techniques are usually employed to offer researchers a wider field of view of microscopic image of biological samples. a mosaic is commonly achieved using automated microscopes and often with one “color" channel, whether it refers to natural or fluorescent analysis. In this work we present a method to achieve three subsequent mosaics of the same part of a stem cell culture analyzed in phase contrast and in fluorescence, with a common non-automated inverted microscope. The mosaics obtained are then merged together to mark, in the original contrast phase images, nuclei and cytoplasm of the cells referring to a mosaic of the culture, rather than to single images. The experiments carried out prove the effectiveness of our approach with cultures of cells stained with calcein (green/cytoplasm and nuclei) and hoechst (blue/nuclei) probes.
Keywords: Microscopy, image mosaicing, fluorescence, stem cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487858 A DCT-Based Secure JPEG Image Authentication Scheme
Authors: Mona F. M. Mursi, Ghazy M.R. Assassa, Hatim A. Aboalsamh, Khaled Alghathbar
Abstract:
The challenge in the case of image authentication is that in many cases images need to be subjected to non malicious operations like compression, so the authentication techniques need to be compression tolerant. In this paper we propose an image authentication system that is tolerant to JPEG lossy compression operations. A scheme for JPEG grey scale images is proposed based on a data embedding method that is based on a secret key and a secret mapping vector in the frequency domain. An encrypted feature vector extracted from the image DCT coefficients, is embedded redundantly, and invisibly in the marked image. On the receiver side, the feature vector from the received image is derived again and compared against the extracted watermark to verify the image authenticity. The proposed scheme is robust against JPEG compression up to a maximum compression of approximately 80%,, but sensitive to malicious attacks such as cutting and pasting.
Keywords: Authentication, DCT, JPEG, Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745857 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V. K. Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261856 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks
Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin
Abstract:
Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3300855 Heavy Metals Estimation in Coastal Areas Using Remote Sensing, Field Sampling and Classical and Robust Statistic
Authors: Elena Castillo-López, Raúl Pereda, Julio Manuel de Luis, Rubén Pérez, Felipe Piña
Abstract:
Sediments are an important source of accumulation of toxic contaminants within the aquatic environment. Bioassays are a powerful tool for the study of sediments in relation to their toxicity, but they can be expensive. This article presents a methodology to estimate the main physical property of intertidal sediments in coastal zones: heavy metals concentration. This study, which was developed in the Bay of Santander (Spain), applies classical and robust statistic to CASI-2 hyperspectral images to estimate heavy metals presence and ecotoxicity (TOC). Simultaneous fieldwork (radiometric and chemical sampling) allowed an appropriate atmospheric correction to CASI-2 images.
Keywords: Remote sensing, intertidal sediment, airborne sensors, heavy metals, ecotoxicity, robust statistic, estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253854 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening
Authors: Ksheeraj Sai Vepuri, Nada Attar
Abstract:
We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.Keywords: Facial expression recognition, image pre-processing, deep learning, CNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544853 Rejuvenate: Face and Body Retouching Using Image Inpainting
Authors: H. AbdelRahman, S. Rostom, Y. Lotfy, S. Salah Eldeen, R. Yassein, N. Awny
Abstract:
People are growing more concerned with their appearance in today's society. But they are terrified of what they will look like after a plastic surgery. People's mental health suffers when they have accidents, burns, or genetic issues that cause them to cleave certain body parts, which makes them feel uncomfortable and unappreciated. The method provides an innovative deep learning-based technique for image inpainting that analyzes different picture structures and fixes damaged images. This study proposes a model based on the Stable Diffusion Inpainting method for in-painting medical images. One significant advancement made possible by deep neural networks is image inpainting, which is the process of reconstructing damaged and missing portions of an image. The patient can see the outcome more easily since the system uses the user's input of an image to identify a problem. It then modifies the image and outputs a fixed image.
Keywords: Generative Adversarial Network, GAN, Large Mask Inpainting, LAMA, Stable Diffusion Inpainting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107852 A Dynamic RGB Intensity Based Steganography Scheme
Authors: Mandep Kaur, Surbhi Gupta, Parvinder S. Sandhu, Jagdeep Kaur
Abstract:
Steganography meaning covered writing. Steganography includes the concealment of information within computer files [1]. In other words, it is the Secret communication by hiding the existence of message. In this paper, we will refer to cover image, to indicate the images that do not yet contain a secret message, while we will refer to stego images, to indicate an image with an embedded secret message. Moreover, we will refer to the secret message as stego-message or hidden message. In this paper, we proposed a technique called RGB intensity based steganography model as RGB model is the technique used in this field to hide the data. The methods used here are based on the manipulation of the least significant bits of pixel values [3][4] or the rearrangement of colors to create least significant bit or parity bit patterns, which correspond to the message being hidden. The proposed technique attempts to overcome the problem of the sequential fashion and the use of stego-key to select the pixels.
Keywords: Steganography, Stego Image, RGB Image, Cryptography, LSB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111851 Response of a Bridge Crane during an Earthquake
Authors: F. Fekak, A. Gravouil, M. Brun, B. Depale
Abstract:
During an earthquake, a bridge crane may be subjected to multiple impacts between crane wheels and rail. In order to model such phenomena, a time-history dynamic analysis with a multi-scale approach is performed. The high frequency aspect of the impacts between wheels and rails is taken into account by a Lagrange explicit event-capturing algorithm based on a velocity-impulse formulation to resolve contacts and impacts. An implicit temporal scheme is used for the rest of the structure. The numerical coupling between the implicit and the explicit schemes is achieved with a heterogeneous asynchronous time-integrator.Keywords: Earthquake, bridge crane, heterogeneous asynchronous time-integrator, impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433850 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810849 Single Frame Supercompression of Still Images,Video, High Definition TV and Digital Cinema
Authors: Mario Mastriani
Abstract:
Super-resolution is nowadays used for a high-resolution image produced from several low-resolution noisy frames. In this work, we consider the problem of high-quality interpolation of a single noise-free image. Such images may come from different sources, i.e., they may be frames of videos, individual pictures, etc. On the other hand, in the encoder we apply a downsampling via bidimen-sional interpolation of each frame, and in the decoder we apply a upsampling by which we restore the original size of the image. If the compression ratio is very high, then we use a convolutive mask that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. In fact, the mentioned mask is coded inside texture memory of a GPGPU.Keywords: General-Purpose computation on Graphics ProcessingUnits, Image Compression, Interpolation, Super-resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999848 Color Image Segmentation and Multi-Level Thresholding by Maximization of Conditional Entropy
Authors: R.Sukesh Kumar, Abhisek Verma, Jasprit Singh
Abstract:
In this work a novel approach for color image segmentation using higher order entropy as a textural feature for determination of thresholds over a two dimensional image histogram is discussed. A similar approach is applied to achieve multi-level thresholding in both grayscale and color images. The paper discusses two methods of color image segmentation using RGB space as the standard processing space. The threshold for segmentation is decided by the maximization of conditional entropy in the two dimensional histogram of the color image separated into three grayscale images of R, G and B. The features are first developed independently for the three ( R, G, B ) spaces, and combined to get different color component segmentation. By considering local maxima instead of the maximum of conditional entropy yields multiple thresholds for the same image which forms the basis for multilevel thresholding.Keywords: conditional entropy, multi-level thresholding, segmentation, two dimensional image histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2998847 Retrieving Similar Segmented Objects Using Motion Descriptors
Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou
Abstract:
The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.
Keywords: Fuzzy Object, Fuzzy Image Segmentation, Motion Descriptors, MRI Imaging, Object-Based Image Retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302846 Low Dimensional Representation of Dorsal Hand Vein Features Using Principle Component Analysis (PCA)
Authors: M.Heenaye-Mamode Khan, R.K. Subramanian, N. A. Mamode Khan
Abstract:
The quest of providing more secure identification system has led to a rise in developing biometric systems. Dorsal hand vein pattern is an emerging biometric which has attracted the attention of many researchers, of late. Different approaches have been used to extract the vein pattern and match them. In this work, Principle Component Analysis (PCA) which is a method that has been successfully applied on human faces and hand geometry is applied on the dorsal hand vein pattern. PCA has been used to obtain eigenveins which is a low dimensional representation of vein pattern features. Low cost CCD cameras were used to obtain the vein images. The extraction of the vein pattern was obtained by applying morphology. We have applied noise reduction filters to enhance the vein patterns. The system has been successfully tested on a database of 200 images using a threshold value of 0.9. The results obtained are encouraging.Keywords: Biometric, Dorsal vein pattern, PCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895845 Sub-Image Detection Using Fast Neural Processors and Image Decomposition
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In this paper, an approach to reduce the computation steps required by fast neural networksfor the searching process is presented. The principle ofdivide and conquer strategy is applied through imagedecomposition. Each image is divided into small in sizesub-images and then each one is tested separately usinga fast neural network. The operation of fast neuralnetworks based on applying cross correlation in thefrequency domain between the input image and theweights of the hidden neurons. Compared toconventional and fast neural networks, experimentalresults show that a speed up ratio is achieved whenapplying this technique to locate human facesautomatically in cluttered scenes. Furthermore, fasterface detection is obtained by using parallel processingtechniques to test the resulting sub-images at the sametime using the same number of fast neural networks. Incontrast to using only fast neural networks, the speed upratio is increased with the size of the input image whenusing fast neural networks and image decomposition.
Keywords: Fast Neural Networks, 2D-FFT, CrossCorrelation, Image decomposition, Parallel Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179844 Boundary Segmentation of Microcalcification using Parametric Active Contours
Authors: Abdul Kadir Jumaat, Siti Salmah Yasiran, Wan Eny Zarina Wan Abd Rahman, Aminah Abdul Malek
Abstract:
A mammography image is composed of low contrast area where the breast tissues and the breast abnormalities such as microcalcification can hardly be differentiated by the medical practitioner. This paper presents the application of active contour models (Snakes) for the segmentation of microcalcification in mammography images. Comparison on the microcalcifiation areas segmented by the Balloon Snake, Gradient Vector Flow (GVF) Snake, and Distance Snake is done against the true value of the microcalcification area. The true area value is the average microcalcification area in the original mammography image traced by the expert radiologists. From fifty images tested, the result obtained shows that the accuracy of the Balloon Snake, GVF Snake, and Distance Snake in segmenting boundaries of microcalcification are 96.01%, 95.74%, and 95.70% accuracy respectively. This implies that the Balloon Snake is a better segmentation method to locate the exact boundary of a microcalcification region.
Keywords: Balloon Snake, GVF Snake, Distance Snake, Mammogram, Microcalcifications, Segmentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726843 Wavelet - Based Classification of Outdoor Natural Scenes by Resilient Neural Network
Authors: Amitabh Wahi, Sundaramurthy S.
Abstract:
Natural outdoor scene classification is active and promising research area around the globe. In this study, the classification is carried out in two phases. In the first phase, the features are extracted from the images by wavelet decomposition method and stored in a database as feature vectors. In the second phase, the neural classifiers such as back-propagation neural network (BPNN) and resilient back-propagation neural network (RPNN) are employed for the classification of scenes. Four hundred color images are considered from MIT database of two classes as forest and street. A comparative study has been carried out on the performance of the two neural classifiers BPNN and RPNN on the increasing number of test samples. RPNN showed better classification results compared to BPNN on the large test samples.
Keywords: BPNN, Classification, Feature extraction, RPNN, Wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943842 Impulse Noise Reduction in Brain Magnetic Resonance Imaging Using Fuzzy Filters
Authors: Benjamin Y. M. Kwan, Hon Keung Kwan
Abstract:
Noise contamination in a magnetic resonance (MR) image could occur during acquisition, storage, and transmission in which effective filtering is required to avoid repeating the MR procedure. In this paper, an iterative asymmetrical triangle fuzzy filter with moving average center (ATMAVi filter) is used to reduce different levels of salt and pepper noise in a brain MR image. Besides visual inspection on filtered images, the mean squared error (MSE) is used as an objective measurement. When compared with the median filter, simulation results indicate that the ATMAVi filter is effective especially for filtering a higher level noise (such as noise density = 0.45) using a smaller window size (such as 3x3) when operated iteratively or using a larger window size (such as 5x5) when operated non-iteratively.Keywords: Brain images, Fuzzy filters, Magnetic resonance imaging, Salt and pepper noise reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213841 Information Fusion for Identity Verification
Authors: Girija Chetty, Monica Singh
Abstract:
In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..
Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779840 Object Speed Estimation by using Fuzzy Set
Authors: Hossein Pazhoumand-Dar, Amir Mohsen Toliyat Abolhassani, Ehsan Saeedi
Abstract:
Speed estimation is one of the important and practical tasks in machine vision, Robotic and Mechatronic. the availability of high quality and inexpensive video cameras, and the increasing need for automated video analysis has generated a great deal of interest in machine vision algorithms. Numerous approaches for speed estimation have been proposed. So classification and survey of the proposed methods can be very useful. The goal of this paper is first to review and verify these methods. Then we will propose a novel algorithm to estimate the speed of moving object by using fuzzy concept. There is a direct relation between motion blur parameters and object speed. In our new approach we will use Radon transform to find direction of blurred image, and Fuzzy sets to estimate motion blur length. The most benefit of this algorithm is its robustness and precision in noisy images. Our method was tested on many images with different range of SNR and is satisfiable.
Keywords: Blur Analysis, Fuzzy sets, Speed estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879