Search results for: smart training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1397

Search results for: smart training

1007 The Mediating Effect of MSMEs Export Performance between Technological Advancement Capabilities and Business Performance

Authors: Fawad Hussain, Mohammad Basir Bin Saud, Mohd Azwardi Md Isa

Abstract:

The aim of this study is to empirically investigate the mediating impact of export performance (EP) between technological advancement capabilities and business performance (BP) of Malaysian manufacturing micro, small and medium sized enterprises (MSME’s). Firm’s technological advancement resources are hypothesized as a platform to enhance both exports and BP of manufacturing MSMEs in Malaysia. This study is twofold, primary it has investigated that technological advancement capabilities helps to appreciates main performance measures noted in terms of EP and Secondly, it investigates that how efficiently and effectively technological advancement capabilities can contribute in overall Malaysian MSME’s BP. Smart PLS-3 statistical software is used to know the association between technological advancement capabilities, MSME’s EP and BP. In this study, the data was composed from Malaysian manufacturing MSME’s in east coast industrial zones known as the manufacturing hub of MSMEs. Seven hundred and fifty (750) questionnaires were distributed, but only 148 usable questionnaires are returned. The finding of this study indicated that technological advancement capabilities helps to strengthen the export in term of time and cost efficient and it plays a significant role in appreciating their BP. This study is helpful for small and medium enterprise owners who intend to expand their business overseas and though smart technological advancement resources they can achieve their business competitiveness and excellence both at local and international markets.

Keywords: Technological advancement capabilities, export performance, business performance, small and medium manufacturing enterprises, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
1006 Application of Digital Tools for Improving Learning

Authors: José L. Jiménez

Abstract:

The use of technology in the classroom is an issue that is constantly evolving. Digital age students learn differently than their teachers did, so now the teacher should be constantly evolving their methods and teaching techniques to be more in touch with the student. In this paper a case study presents how were used some of these technologies by accompanying a classroom course, this in order to provide students with a different and innovative experience as their teacher usually presented the activities to develop. As students worked in the various activities, they increased their digital skills by employing unknown tools that helped them in their professional training. The twenty-first century teacher should consider the use of Information and Communication Technologies in the classroom thinking in skills that students of the digital age should possess. It also takes a brief look at the history of distance education and it is also highlighted the importance of integrating technology as part of the student's training.

Keywords: Digital tools, on-line learning, social networks, technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
1005 Factors that Contribute to the Improvement of the Sense of Self-Efficacy of Special Educators in Inclusive Settings in Greece

Authors: Sotiria Tzivinikou, Dimitra Kagkara

Abstract:

Teacher’s sense of self-efficacy can affect significantly both teacher’s and student’s performance. More specific, self-efficacy is associated with the learning outcomes as well as student’s motivation and self-efficacy. For example, teachers with high sense of self-efficacy are more open to innovations and invest more effort in teaching. In addition to this, effective inclusive education is associated with higher levels of teacher’s self-efficacy. Pre-service teachers with high levels of self-efficacy could handle student’s behavior better and more effectively assist students with special educational needs. Teacher preparation programs are also important, because teacher’s efficacy beliefs are shaped early in learning, as a result the quality of teacher’s education programs can affect the sense of self-efficacy of pre-service teachers. Usually, a number of pre-service teachers do not consider themselves well prepared to work with students with special educational needs and do not have the appropriate sense of self-efficacy. This study aims to investigate the factors that contribute to the improvement of the sense of self-efficacy of pre-service special educators by using an academic practicum training program. The sample of this study is 159 pre-service special educators, who also participated in the academic practicum training program. For the purpose of this study were used quantitative methods for data collection and analysis. Teacher’s self-efficacy was assessed by the teachers themselves with the completion of a questionnaire which was based on the scale of Teacher’s Sense of Efficacy Scale. Pre and post measurements of teacher’s self-efficacy were taken. The results of the survey are consistent with those of the international literature. The results indicate that a significant number of pre-service special educators do not hold the appropriate sense of self-efficacy regarding teaching students with special educational needs. Moreover, a quality academic training program constitutes a crucial factor for the improvement of the sense of self-efficacy of pre-service special educators, as additional for the provision of high quality inclusive education.

Keywords: Inclusive education, pre-service, self-efficacy, training program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
1004 Combining ILP with Semi-supervised Learning for Web Page Categorization

Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul

Abstract:

This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.

Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
1003 Closed Greenhouse Production Systems for Smart Plant Production in Urban Areas

Authors: U. Schmidt, D. Dannehl, I. Schuch, J. Suhl, T. Rocksch, R. Salazar-Moreno, E. Fitz-Rodrigues, A. Rojano Aquilar, I. Lopez Cruz, G. Navas Gomez, R. A. Abraham, L. C. Irineo, N. G. Gilberto

Abstract:

The integration of agricultural production systems into urban areas is a challenge for the coming decades. Because of increasing greenhouse gas emission and rising resource consumption as well as costs in animal husbandry, the dietary habits of people in the 21st century have to focus on herbal foods. Intensive plant cultivation systems in large cities and megacities require a smart coupling of information, material and energy flow with the urban infrastructure in terms of Horticulture 4.0. In recent years, many puzzle pieces have been developed for these closed processes at the Humboldt University. To compile these for an urban plant production, it has to be optimized and networked with urban infrastructure systems. In the field of heat energy production, it was shown that with closed greenhouse technology and patented heat exchange and storage technology energy can be provided for heating and domestic hot water supply in the city. Closed water circuits can be drastically reducing the water requirements of plant production in urban areas. Ion sensitive sensors and new disinfection methods can help keep circulating nutrient solutions in the system for a longer time in urban plant production greenhouses.

Keywords: Semi closed, greenhouses, urban farming, solar heat collector, closed water cycles, aquaponics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
1002 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System

Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari

Abstract:

This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].

Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
1001 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process

Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
1000 Application of BP Neural Network Model in Sports Aerobics Performance Evaluation

Authors: Shuhe Shao

Abstract:

This article provides partial evaluation index and its standard of sports aerobics, including the following 12 indexes: health vitality, coordination, flexibility, accuracy, pace, endurance, elasticity, self-confidence, form, control, uniformity and musicality. The three-layer BP artificial neural network model including input layer, hidden layer and output layer is established. The result shows that the model can well reflect the non-linear relationship between the performance of 12 indexes and the overall performance. The predicted value of each sample is very close to the true value, with a relative error fluctuating around of 5%, and the network training is successful. It shows that BP network has high prediction accuracy and good generalization capacity if being applied in sports aerobics performance evaluation after effective training.

Keywords: BP neural network, sports aerobics, performance, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
999 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: Audit, machine learning, assessment, metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030
998 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: Personal information, deep learning, auto fill, NLP, document analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862
997 Assessing the Competence of Junior Paediatric Doctors in Managing Paediatric Diabetic Ketoacidosis: An Exploration Across Paediatric Care Units in UK

Authors: Mai Ali

Abstract:

Advancing beyond the junior stage of a paediatrician’s career is a crucial step where they accumulate essential skills and knowledge. This process prepares them for the challenges they will encounter throughout their profession, particularly in dealing with paediatric emergencies. This can be especially demanding for trainees specializing in fields like endocrinology, particularly in the management of Diabetic Ketoacidosis (DKA) in the UK. In different societal contexts, junior doctors, whether specializing in paediatrics or other medical fields, are generally expected to possess a fundamental level of knowledge and skills necessary for managing DKA emergencies. These physicians consistently concurred in recognizing prevalent problems in the healthcare facilities they examined. Such issues include the lack of established guidelines for DKA treatment and the inadequate availability of comprehensive training opportunities. The abstract underscores the critical importance of junior paediatricians acquiring expertise in managing paediatric emergencies, with a specific focus on DKA. Commonly, issues like the lack of standardized protocols and training deficiencies are recurring themes across healthcare facilities. This research proposal aims to conduct a thematic analysis of the proficiency of paediatric trainees in the United Kingdom when handling DKA in various clinical contexts. The primary goal is to assess their competency and suggest effective strategies for comprehensive DKA training improvement.

Keywords: DKA management, junior paediatricians, level of competence, standardized protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49
996 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network

Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi

Abstract:

In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
995 When Psychology Meets Ecology: Cognitive Flexibility for Quarry Rehabilitation

Authors: J. Fenianos, C. Khater, D. Brouillet

Abstract:

Ecological projects are often faced with reluctance from local communities hosting the project, especially when this project involves variation from preset ideas or classical practices. This paper aims at appreciating the contribution of environmental psychology through cognitive flexibility exercises to improve the acceptability of local communities in adopting more ecological rehabilitation scenarios. The study is based on a quarry site located in Bekaa- Lebanon. Four groups were considered with different levels of involvement, as follows: Group 1 is Training (T) – 50 hours of on-site training over 8 months, Group 2 is Awareness (A) – 2 hours of awareness raising session, Group 3 is Flexibility (F) – 2 hours of flexibility exercises and Group 4 is the Control (C). The results show that individuals in Group 3 (F) who followed flexibility sessions accept comparably the ecological rehabilitation option over the more classical one. This is also the case for the people in Group 1 (T) who followed a more time-demanding “on-site training”. Another experience was conducted on a second quarry site combining flexibility with awareness-raising. This research confirms that it is possible to reduce resistance to change thanks to a limited in-time intervention using cognitive flexibility. This methodological approach could be transferable to other environmental problems involving local communities and changes in preset perceptions.

Keywords: Acceptability, ecological restoration, environmental psychology, Lebanon, local communities, resistance to change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
994 Design of Smart Urban Lighting by Using Social Sustainability Approach

Authors: Mohsen Noroozi, Maryam Khalili

Abstract:

Creating cities, objects and spaces that are economically, environmentally and socially sustainable and which meet the challenge of social interaction and generation change will be one of the biggest tasks of designers. Social sustainability is about how individuals, communities and societies live with each other and set out to achieve the objectives of development model which they have chosen for themselves. Urban lightning as one of the most important elements of urban furniture that people constantly interact with it in public spaces; can be a significant object for designers. Using intelligence by internet of things for urban lighting makes it more interactive in public environments. It can encourage individuals to carry out appropriate behaviors and provides them the social awareness through new interactions. The greatest strength of this technology is its strong impact on many aspects of everyday life and users' behaviors. The analytical phase of the research is based on a multiple method survey strategy. Smart lighting proposed in this paper is an urban lighting designed on results obtained from a collective point of view about the social sustainability. In this paper, referring to behavioral design methods, the social behaviors of the people has been studied. Data show that people demands for a deeper experience of social participation, safety perception and energy saving with the meaningful use of interactive and colourful lighting effects. By using intelligent technology, some suggestions are provided in the field of future lighting to consider the new forms of social sustainability.

Keywords: Behavior model, internet of things, social sustainability, urban lighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
993 Inductive Grammar, Student-Centered Reading, and Interactive Poetry: The Effects of Teaching English with Fun in Schools of Two Villages in Lebanon

Authors: Talar Agopian

Abstract:

Teaching English as a Second Language (ESL) is a common practice in many Lebanese schools. However, ESL teaching is done in traditional ways. Methods such as constructivism are seldom used, especially in villages. Here lies the significance of this research which joins constructivism and Piaget’s theory of cognitive development in ESL classes in Lebanese villages. The purpose of the present study is to explore the effects of applying constructivist student-centered strategies in teaching grammar, reading comprehension, and poetry on students in elementary ESL classes in two villages in Lebanon, Zefta in South Lebanon and Boqaata in Mount Lebanon. 20 English teachers participated in a training titled “Teaching English with Fun”, which focused on strategies that create a student-centered class where active learning takes place and there is increased learner engagement and autonomy. The training covered three main areas in teaching English: grammar, reading comprehension, and poetry. After participating in the training, the teachers applied the new strategies and methods in their ESL classes. The methodology comprised two phases: in phase one, practice-based research was conducted as the teachers attended the training and applied the constructivist strategies in their respective ESL classes. Phase two included the reflections of the teachers on the effects of the application of constructivist strategies. The results revealed the educational benefits of constructivist student-centered strategies; the students of teachers who applied these strategies showed improved engagement, positive attitudes towards poetry, increased motivation, and a better sense of autonomy. Future research is required in applying constructivist methods in the areas of writing, spelling, and vocabulary in ESL classrooms of Lebanese villages.

Keywords: Active learning, constructivism, learner engagement, student-centered strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
992 Blockchain Based Hydrogen Market: A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional and global strategies focusing on hydrogen (H2) and blockchain technologies are fueling remarkable advancements. These strategies underpin the revolutionary 'Blockchain Based Hydrogen Market (BBH2)' project, with the primary objective of creating a Blockchain Minimum Viable Product (B-MVP) tailored to the hydrogen market. The B-MVP harnesses blockchain's capabilities, establishing a unified platform for secure, automated transactions via smart contracts. This innovation promises to reshape hydrogen logistics, trade, and transactions. The B-MVP carries transformative potential across diverse sectors, benefiting renewable energy producers, surplus energy-based hydrogen manufacturers, grid operators, and consumers. By implementing standardized, automated, tamper-proof processes, it bolsters cost-efficiency and enables transparent, traceable transactions. Its core mission is to verify the integrity of 'green' hydrogen, tracing its journey from renewable producers to end-users. This emphasis on transparency fosters economic, ecological, and social sustainability within a secure, transparent market. A standout feature of the B-MVP is its cross-border adaptability, obviating the need for nation-specific data storage, and broadening its global reach. This adaptability also spurs long-term job creation by establishing a dedicated blockchain operating firm. By attracting skilled labor and offering training, the B-MVP fortifies the hydrogen sector's workforce. Furthermore, it catalyzes innovative business models, luring more companies and startups, contributing to sustained job growth. For example, data analysis can tailor tariffs to offer demand-centric network capacities to producers and operators, providing tamper-proof pricing options to redistributors and end-customers. Beyond technological and economic progress, the B-MVP amplifies the prominence of national and international standards efforts. The region implementing the B-MVP becomes recognized as a pioneer in climate-friendly, sustainable, and forward-thinking practices, generating interest and attention beyond its geographic boundaries. Additionally, it fosters knowledge transfer between academia and industry, promoting scientific advancements, aligning with innovation management, and nurturing an innovation culture in the hydrogen sector. Through blockchain-hydrogen integration, the B-MVP champions comprehensive innovation, contributing to a sustainable future in the hydrogen industry. Implementation involves evaluating blockchain tech, developing smart contracts, and ensuring interoperability with existing systems. Scalability testing and data format development further validate the B-MVP's potential. BBH2 secures funding under the 'Technology Offensive Hydrogen,' a part of the Federal Ministry of Economics and Climate Protection's 7th Energy Research Program.

Keywords: Hydrogen, blockchain, sustainability, structural change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161
991 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm

Authors: Abdullah A. AlShaher

Abstract:

In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.

Keywords: Shape recognition, Arabic handwritten characters, regression curves, expectation maximization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
990 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach

Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak

Abstract:

Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.

Keywords: Palm oil, fatty acid, NIRS, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4372
989 Greenhouse Micro Climate Monitoring Based On WSN with Smart Irrigation Technique

Authors: Mahmoud Shaker, Ala'a Imran

Abstract:

Greenhouse is a building, which provides controlled climate conditions to the plants to keep them from external hard conditions. Greenhouse technology gives freedom to the farmer to select any crop type in any time during year. The quality and productivity of plants inside greenhouse is highly dependent on the management quality and a good management scheme is defined by the quality of the information collected from the greenhouse environment. Therefore, Continuous monitoring of environmental variables such as temperature, humidity, and soil moisture gives information to the grower to better understand, how each factor affects growth and how to manage maximal crop productiveness. In this piper, we designed and implemented climate monitoring with irrigation control system based on Wireless Sensor Network (WSN) technology. The designed system is characterized with friendly to use, easy to install by any greenhouse user, multi-sensing nodes, multi-PAN ID, low cast, water irrigation control and low operation complexity. The system consists of two node types (sensing and control) with star topology on one PAN ID. Moreover, greenhouse manager can modifying system parameters such as (sensing node addresses, irrigation upper and lower control limits) by updating corresponding data in SDRAM memory. In addition, the designed system uses 2*16 characters. LCD to display the micro climate parameters values of each plants row inside the greenhouse.

Keywords: ZigBee, WSN, Arduino platform, Greenhouse automation, micro climate monitoring, smart Irrigation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5163
988 Analysis and Design of Security Oriented Communication System

Authors: Jiří Barta

Abstract:

The paper deals with results of a project “Interoperability Workplaces to Support Teaching of Security Management in a Computer Network". This project is focused on the perspectives and possibilities of "new approaches" to education, training and crisis communication of rescue teams in the Czech Republic. It means that common technologies considering new perspectives are used to educate selected members of crisis management. The main part concentrates on possibilities of application of new technology and computer-aided tools to education and training of Integrated Rescue System teams.This project uses the COST principle for the creation of specialized centers and for all communication between these workplaces.

Keywords: Communication of Crisis Management, Information System, Interoperability, specializedcenter, Security Oriented Information System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
987 Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid

Authors: Lukumba Phiri, Simon Tembo, Kumbuso Joshua Nyoni

Abstract:

In Zambia, recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines, to upgrade power systems into smart grids, target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, they are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, and therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we present a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability.

Keywords: Anomaly detection, SmartGrid, edge, maintainability, reliability, stochastic process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 324
986 Distributed Manufacturing (DM) - Smart Units and Collaborative Processes

Authors: Hermann Kuehnle

Abstract:

Applications of the Hausdorff space and its mappings into tangent spaces are outlined, including their fractal dimensions and self-similarities. The paper details this theory set up and further describes virtualizations and atomization of manufacturing processes. It demonstrates novel concurrency principles that will guide manufacturing processes and resources configurations. Moreover, varying levels of details may be produced by up folding and breaking down of newly introduced generic models. This choice of layered generic models for units and systems aspects along specific aspects allows research work in parallel to other disciplines with the same focus on all levels of detail. More credit and easier access are granted to outside disciplines for enriching manufacturing grounds. Specific mappings and the layers give hints for chances for interdisciplinary outcomes and may highlight more details for interoperability standards, as already worked on the international level. The new rules are described, which require additional properties concerning all involved entities for defining distributed decision cycles, again on the base of self-similarity. All properties are further detailed and assigned to a maturity scale, eventually displaying the smartness maturity of a total shopfloor or a factory. The paper contributes to the intensive ongoing discussion in the field of intelligent distributed manufacturing and promotes solid concepts for implementations of Cyber Physical Systems and the Internet of Things into manufacturing industry, like industry 4.0, as discussed in German-speaking countries.

Keywords: Autonomous unit, Networkability, Smart manufacturing unit, Virtualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
985 A Critical Social Research Perspective on Self-Directed Learning and Information Technology Practitioners

Authors: Roelien Goede

Abstract:

Information systems practitioners are frequently required to master new technology, often without the aid of formal training. They require the skill to manage their own learning and, when this skill is developed in their formal training, their adaptability to new technology may be improved. Self- directed learning is the ability of the learner to manage his or her own learning experience with some guidance from a facilitator. Self-directed learning skills are best improved when practiced. This paper reflects on a critical social research project to improve the self-directed learning skills of fourth year Information Systems students. Critical social research differs from other research paradigms in that the researcher is viewed as the agent of change to achieve the desired outcome in the problem situation.

Keywords: Action Research, Critical Social Research, Information Systems Education, Self-directed Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
984 Context Aware Lightweight Energy Efficient Framework

Authors: D. Sathan, A. Meetoo, R. K. Subramaniam

Abstract:

Context awareness is a capability whereby mobile computing devices can sense their physical environment and adapt their behavior accordingly. The term context-awareness, in ubiquitous computing, was introduced by Schilit in 1994 and has become one of the most exciting concepts in early 21st-century computing, fueled by recent developments in pervasive computing (i.e. mobile and ubiquitous computing). These include computing devices worn by users, embedded devices, smart appliances, sensors surrounding users and a variety of wireless networking technologies. Context-aware applications use context information to adapt interfaces, tailor the set of application-relevant data, increase the precision of information retrieval, discover services, make the user interaction implicit, or build smart environments. For example: A context aware mobile phone will know that the user is currently in a meeting room, and reject any unimportant calls. One of the major challenges in providing users with context-aware services lies in continuously monitoring their contexts based on numerous sensors connected to the context aware system through wireless communication. A number of context aware frameworks based on sensors have been proposed, but many of them have neglected the fact that monitoring with sensors imposes heavy workloads on ubiquitous devices with limited computing power and battery. In this paper, we present CALEEF, a lightweight and energy efficient context aware framework for resource limited ubiquitous devices.

Keywords: Context-Aware, Energy-Efficient, Lightweight, Ubiquitous Devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
983 Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity

Authors: Chia-Ling Chang, Chung-Sheng Liao

Abstract:

The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.

Keywords: Artificial Neural Network (ANN), sensitivity analysis, turbidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
982 Enabling Automated Deployment for Cluster Computing in Distributed PC Classrooms

Authors: Shuen-Tai Wang, Ying-Chuan Chen, Hsi-Ya Chang

Abstract:

The rapid improvement of the microprocessor and network has made it possible for the PC cluster to compete with conventional supercomputers. Lots of high throughput type of applications can be satisfied by using the current desktop PCs, especially for those in PC classrooms, and leave the supercomputers for the demands from large scale high performance parallel computations. This paper presents our development on enabling an automated deployment mechanism for cluster computing to utilize the computing power of PCs such as reside in PC classroom. After well deployment, these PCs can be transformed into a pre-configured cluster computing resource immediately without touching the existing education/training environment installed on these PCs. Thus, the training activities will not be affected by this additional activity to harvest idle computing cycles. The time and manpower required to build and manage a computing platform in geographically distributed PC classrooms also can be reduced by this development.

Keywords: PC cluster, automated deployment, cluster computing, PC classroom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
981 The Announcer Trainee Satisfaction by National Broadcasting and Telecommunications Commission of Thailand

Authors: Nareenad Panbun

Abstract:

The objective is to study the knowledge utilization from the participants of the announcer training program by National Broadcasting and Telecommunications Commission (NBTC). This study is a quantitative research based on surveys and self-answering questionnaires. The population of this study is 100 participants randomly chosen by non-probability sampling method. The results have shown that most of the participants were satisfied with the topics of general knowledge about the broadcasting and television business for 37 people representing 37%, followed by the topics of broadcasting techniques. The legal issues, consumer rights, television business ethics, and credibility of the media are, in addition to the media's role and responsibilities in society, the use of language for successful communication. Therefore, the communication language skills are the most important for all of the trainees and will also build up the image of the broadcasting center.

Keywords: Announcer training program, participant, requirements announced, theory of utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
980 An Immersive Serious Game for Firefighting and Evacuation Training in Healthcare Facilities

Authors: Anass Rahouti, Guillaume Salze, Ruggiero Lovreglio, Sélim Datoussaïd

Abstract:

In healthcare facilities, training the staff for firefighting and evacuation in real buildings is very challenging due to the presence of a vulnerable population in such an environment. In a standard environment, traditional approaches, such as fire drills, are often used to train the occupants and provide them with information about fire safety procedures. However, those traditional approaches may be inappropriate for a vulnerable population and can be inefficient from an educational viewpoint as it is impossible to expose the occupants to scenarios similar to a real emergency. Immersive serious games could be used as an alternative to traditional approaches to overcome their limitations. Serious games are already being used in different safety domains such as fires, earthquakes and terror attacks for several building types (e.g., office buildings, train stations, tunnels, etc.). In this study, we developed an immersive serious game to improve the fire safety skills of staff in healthcare facilities. An accurate representation of the healthcare environment was built in Unity3D by including visual and audio stimuli inspired from those employed in commercial action games. The serious game is organised in three levels. In each of them, the trainee is presented with a specific fire emergency and s/he can perform protective actions (e.g., firefighting, helping non-ambulant occupants, etc.) or s/he can ignore the opportunity for action and continue the evacuation. In this paper, we describe all the steps required to develop such a prototype, as well as the key questions that need to be answered, to develop a serious game for firefighting and evacuation in healthcare facilities.

Keywords: Fire Safety, healthcare, serious game, training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196
979 Neural Network Based Approach for Face Detection cum Face Recognition

Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh

Abstract:

Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.

Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
978 A Novel Estimation Method for Integer Frequency Offset in Wireless OFDM Systems

Authors: Taeung Yoon, Youngpo Lee, Chonghan Song, Na Young Ha, Seokho Yoon

Abstract:

Ren et al. presented an efficient carrier frequency offset (CFO) estimation method for orthogonal frequency division multiplexing (OFDM), which has an estimation range as large as the bandwidth of the OFDM signal and achieves high accuracy without any constraint on the structure of the training sequence. However, its detection probability of the integer frequency offset (IFO) rapidly varies according to the fractional frequency offset (FFO) change. In this paper, we first analyze the Ren-s method and define two criteria suitable for detection of IFO. Then, we propose a novel method for the IFO estimation based on the maximum-likelihood (ML) principle and the detection criteria defined in this paper. The simulation results demonstrate that the proposed method outperforms the Ren-s method in terms of the IFO detection probability irrespective of a value of the FFO.

Keywords: Orthogonal frequency division multiplexing, integer frequency offset, estimation, training symbol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452