Search results for: semantic decision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1711

Search results for: semantic decision

1321 Modeling Approach to the Specific Tactical Activities

Authors: Ivana Mokrá

Abstract:

The contribution deals with current or potential approaches to the modeling and optimization of tactical activities. This issue takes on importance in recent times, particularly with the increasing trend of digitized battlefield, the development of C4ISR systems and intention to streamline the command and control process at the lowest levels of command. From fundamental and philosophically point of view, this new approaches seek to significantly upgrade and enhance the decision-making process of the tactical commanders.

Keywords: Computer decision support, C4ISTAR, ISR, DSS, OTU

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1269
1320 Order Partitioning in Hybrid MTS/MTO Contexts using Fuzzy ANP

Authors: H. Rafiei, M. Rabbani

Abstract:

A novel concept to balance and tradeoff between make-to-stock and make-to-order has been hybrid MTS/MTO production context. One of the most important decisions involved in the hybrid MTS/MTO environment is determining whether a product is manufactured to stock, to order, or hybrid MTS/MTO strategy. In this paper, a model based on analytic network process is developed to tackle the addressed decision. Since the regarded decision deals with the uncertainty and ambiguity of data as well as experts- and managers- linguistic judgments, the proposed model is equipped with fuzzy sets theory. An important attribute of the model is its generality due to diverse decision factors which are elicited from the literature and developed by the authors. Finally, the model is validated by applying to a real case study to reveal how the proposed model can actually be implemented.

Keywords: Fuzzy analytic network process, Hybrid make-tostock/ make-to-order, Order partitioning, Production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
1319 Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning

Authors: Indiramma M., K. R. Anandakumar

Abstract:

Trust management and Reputation models are becoming integral part of Internet based applications such as CSCW, E-commerce and Grid Computing. Also the trust dimension is a significant social structure and key to social relations within a collaborative community. Collaborative Decision Making (CDM) is a difficult task in the context of distributed environment (information across different geographical locations) and multidisciplinary decisions are involved such as Virtual Organization (VO). To aid team decision making in VO, Decision Support System and social network analysis approaches are integrated. In such situations social learning helps an organization in terms of relationship, team formation, partner selection etc. In this paper we focus on trust learning. Trust learning is an important activity in terms of information exchange, negotiation, collaboration and trust assessment for cooperation among virtual team members. In this paper we have proposed a reinforcement learning which enhances the trust decision making capability of interacting agents during collaboration in problem solving activity. Trust computational model with learning that we present is adapted for best alternate selection of new project in the organization. We verify our model in a multi-agent simulation where the agents in the community learn to identify trustworthy members, inconsistent behavior and conflicting behavior of agents.

Keywords: Collaborative Decision making, Trust, Multi Agent System (MAS), Bayesian Network, Reinforcement Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
1318 The Framework of Termination Mechanism in Modern Emergency Management

Authors: Yannan Wu, An Chen, Yan Zhao

Abstract:

Termination Mechanism is an indispensible part of the emergency management mechanism. Despite of its importance in both theory and practice, it is almost a brand new field for researching. The concept of termination mechanism is proposed firstly in this paper, and the design and implementation which are helpful to guarantee the effect and integrity of emergency management are discussed secondly. Starting with introduction of the problems caused by absent termination and incorrect termination, the essence of termination mechanism is analyzed, a model based on Optimal Stopping Theory is constructed and the termination index is given. The model could be applied to find the best termination time point.. Termination decision should not only be concerned in termination stage, but also in the whole emergency management process, which makes it a dynamic decision making process. Besides, the main subjects and the procedure of termination are illustrated after the termination time point is given. Some future works are discussed lastly.

Keywords: Emergency management, Termination Mechanism, Optimal Termination Model, Decision Making, Optimal StoppingTheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
1317 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: Academic environment model, decision trees, FSASEC, K-nearest neighbor, machine learning, popularity index, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
1316 Application of Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants

Authors: Oscar Vega Camacho, Andrea Vargas Guevara, Ellery Rowina Ariza

Abstract:

This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its wastewater treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.

Keywords: Decision making, Markov chain, optimization, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
1315 Defining a Semantic Web-based Framework for Enabling Automatic Reasoning on CIM-based Management Platforms

Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano

Abstract:

CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping provides CIM diagrams with precise semantics and can be used for automatic reasoning about the management information models, as a design aid, by means of newgeneration CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.

Keywords: CIM, Knowledge-based Information Models, OntologyLanguages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
1314 The Performance Improvement of Automatic Modulation Recognition Using Simple Feature Manipulation, Analysis of the HOS, and Voted Decision

Authors: Heroe Wijanto, Sugihartono, Suhartono Tjondronegoro, Kuspriyanto

Abstract:

The use of High Order Statistics (HOS) analysis is expected to provide so many candidates of features that can be selected for pattern recognition. More candidates of the feature can be extracted using simple manipulation through a specific mathematical function prior to the HOS analysis. Feature extraction method using HOS analysis combined with Difference to the Nth-Power manipulation has been examined in application for Automatic Modulation Recognition (AMR) to perform scheme recognition of three digital modulation signal, i.e. QPSK-16QAM-64QAM in the AWGN transmission channel. The simulation results is reported when the analysis of HOS up to order-12 and the manipulation of Difference to the Nth-Power up to N = 4. The obtained accuracy rate of AMR using the method of Simple Decision obtained 90% in SNR > 10 dB in its classifier, while using the method of Voted Decision is 96% in SNR > 2 dB.

Keywords: modulation, automatic modulation recognition, feature analysis, feature manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119
1313 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration

Authors: S. Ghorbani, N. I. Polushin

Abstract:

Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.

Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
1312 Modern Method for Solving Pure Integer Programming Models

Authors: G. Shojatalab

Abstract:

In this paper, all variables are supposed to be integer and positive. In this modern method, objective function is assumed to be maximized or minimized but constraints are always explained like less or equal to. In this method, choosing a dual combination of ideal nonequivalent and omitting one of variables. With continuing this act, finally, having one nonequivalent with (n-m+1) unknown quantities in which final nonequivalent, m is counter for constraints, n is counter for variables of decision.

Keywords: Integer, Programming, Operation Research, Variables of decision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
1311 Decision Support System for Flood Crisis Management using Artificial Neural Network

Authors: Muhammad Aqil, Ichiro Kita, Akira Yano, Nishiyama Soichi

Abstract:

This paper presents an alternate approach that uses artificial neural network to simulate the flood level dynamics in a river basin. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach and evolving graphical feature and can be adopted for any similar situation to predict the flood level. The main data processing includes the gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood level data, to train/test the model using various inputs and to visualize results. The program code consists of a set of files, which can as well be modified to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The running results indicate that the decision support system applied to the flood level seems to have reached encouraging results for the river basin under examination. The comparison of the model predictions with the observed data was satisfactory, where the model is able to forecast the flood level up to 5 hours in advance with reasonable prediction accuracy. Finally, this program may also serve as a tool for real-time flood monitoring and process control.

Keywords: Decision Support System, Neural Network, Flood Level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1310 Modeling of Supply Chains Delocalization Problems Taking into Account the New Financial Policies: Case of Multinational Firms Established in OECD Member Countries

Authors: Mouna Benfssahi, Zoubir El Felsoufi

Abstract:

For many enterprises, the delocalization of a part or the totality of their supply chain to low cost countries is the best way to reduce costs and remain competitive against the growing globalized market. This new tendency is driven by logistics advantages, as well as, financial and tax discount offered by the host countries. The objective of this article is to examine the new financial challenges introduced by the project of base erosion and profits shifting (BEPS), published in 2015, and also their impact on the decision of delocalization. In fact, the strategy adopted by multinational firms for determining the transfer price (TP) of goods and services, as well as the shared amount of revenues and expenses have a major impact upon group profit and may contribute to divergent results. In order to get more profit, a coherent decision of delocalization should be based on an evaluation of all the operational and financial characteristics associated with such movement. Therefore, it is interesting to model these new constraints and integrate them in a more global decision model. The established model will enable to measure how much these financial constraints impact the decision of delocalization and will give new helpful directives for enterprise managers.

Keywords: Delocalization, intragroup transaction, multinational firms, optimization model, supply chain management, transfer pricing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
1309 A Multigranular Linguistic Additive Ratio Assessment Model in Group Decision Making

Authors: Wiem Daoud Ben Amor, Luis Martínez López, Jr., Hela Moalla Frikha

Abstract:

Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain context where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ELH-ARAS). Within the ELH-ARAS approach, the decision maker (DMs) can diagnose the results (the ranking of the alternatives) in a decomposed style i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e., the collective final results of all experts are able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ELH-ARAS technique makes it easier for decision-makers to understand the results. Finally, an MCGDM case study is given to illustrate the proposed approach.

Keywords: Additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362
1308 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper introduces an original method of parametric optimization of the structure for multimodal decisionlevel fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

Keywords: Сlassification accuracy, fusion solution, total error rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
1307 GPT Onto: A New Beginning for Malaysia Gross Pollutant Trap Ontology

Authors: Chandrika M.J., Lariyah M.S., Alicia Y.C. Tang

Abstract:

Ontology is widely being used as a tool for organizing information, creating the relation between the subjects within the defined knowledge domain area. Various fields such as Civil, Biology, and Management have successful integrated ontology in decision support systems for managing domain knowledge and to assist their decision makers. Gross pollutant traps (GPT) are devices used in trapping and preventing large items or hazardous particles in polluting and entering our waterways. However choosing and determining GPT is a challenge in Malaysia as there are inadequate GPT data repositories being captured and shared. Hence ontology is needed to capture, organize and represent this knowledge into meaningful information which can be contributed to the efficiency of GPT selection in Malaysia urbanization. A GPT Ontology framework is therefore built as the first step to capture GPT knowledge which will then be integrated into the decision support system. This paper will provide several examples of the GPT ontology, and explain how it is constructed by using the Protégé tool.

Keywords: Gross pollutant Trap, Ontology, Protégé.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
1306 Fusion of ETM+ Multispectral and Panchromatic Texture for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

This paper proposes to use ETM+ multispectral data and panchromatic band as well as texture features derived from the panchromatic band for land cover classification. Four texture features including one 'internal texture' and three GLCM based textures namely correlation, entropy, and inverse different moment were used in combination with ETM+ multispectral data. Two data sets involving combination of multispectral, panchromatic band and its texture were used and results were compared with those obtained by using multispectral data alone. A decision tree classifier with and without boosting were used to classify different datasets. Results from this study suggest that the dataset consisting of panchromatic band, four of its texture features and multispectral data was able to increase the classification accuracy by about 2%. In comparison, a boosted decision tree was able to increase the classification accuracy by about 3% with the same dataset.

Keywords: Internal texture; GLCM; decision tree; boosting; classification accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1305 Sequence-based Prediction of Gamma-turn Types using a Physicochemical Property-based Decision Tree Method

Authors: Chyn Liaw, Chun-Wei Tung, Shinn-Jang Ho, Shinn-Ying Ho

Abstract:

The γ-turns play important roles in protein folding and molecular recognition. The prediction and analysis of γ-turn types are important for both protein structure predictions and better understanding the characteristics of different γ-turn types. This study proposed a physicochemical property-based decision tree (PPDT) method to interpretably predict γ-turn types. In addition to the good prediction performance of PPDT, three simple and human interpretable IF-THEN rules are extracted from the decision tree constructed by PPDT. The identified informative physicochemical properties and concise rules provide a simple way for discriminating and understanding γ-turn types.

Keywords: Classification and regression tree (CART), γ-turn, Physicochemical properties, Protein secondary structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
1304 Multicriteria Decision Analysis for Development Ranking of Balkan Countries

Authors: C. Ardil

Abstract:

In this research, the Balkan peninsula countries' developmental integration into European Union represents the strategic economic development objectives of the countries in the region. In order to objectively analyze the level of economic development competition of Balkan Peninsula countries, the mathematical compromise programming technique of multicriteria evaluation is used in this ranking problem. The primary aim of this research is to explain the role and significance of the multicriteria method evaluation using a real example of compromise solutions. Using the mathematical compromise programming technique, twelve countries of the Balkan Peninsula are economically evaluated and mutually compared. The economic development evaluation of the countries is performed according to five evaluation criteria forming the basis for economic development evaluation. The multiattribute model is solved using the mathematical compromise programming technique for producing different Pareto solutions. The results obtained by the multicriteria evaluation gives the possibility of identification and evaluation of the most eminent economic development indicators for each country separately. Finally, in this way, the proposed method has proved to be a successful model for the evaluation of the Balkan peninsula countries' economic development competition.

Keywords: Balkan peninsula countries, standard deviation, multicriteria decision making, mathematical compromise programming, multicriteria decision making, multicriteria analysis, multicriteria decision analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
1303 Neuromarketing: Discovering the Somathyc Marker in the Consumer´s Brain

Authors: Mikel Alonso López, María Francisca Blasco López, Víctor Molero Ayala

Abstract:

The present study explains the somatic marker theory of Antonio Damasio, which indicates that when making a decision, the stored or possible future scenarios (future memory) images allow people to feel for a moment what would happen when they make a choice, and how this is emotionally marked. This process can be conscious or unconscious. The development of new Neuromarketing techniques such as functional magnetic resonance imaging (fMRI), carries a greater understanding of how the brain functions and consumer behavior. In the results observed in different studies using fMRI, the evidence suggests that the somatic marker and future memories influence the decision-making process, adding a positive or negative emotional component to the options. This would mean that all decisions would involve a present emotional component, with a rational cost-benefit analysis that can be performed later.

Keywords: Emotions, decision making, somatic marker, consumer´s brain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
1302 Development of Storm Water Quality Improvement Strategy Plan for Local City Councils in Western Australia

Authors: Ranjan Sarukkalige, Dinushi Gamage

Abstract:

The aim of this study was to develop a storm water quality improvement strategy plan (WQISP) which assists managers and decision makers of local city councils in enhancing their activities to improve regional water quality. City of Gosnells in Western Australia has been considered as a case study. The procedure on developing the WQISP consists of reviewing existing water quality data, identifying water quality issues in the study areas and developing a decision making tool for the officers, managers and decision makers. It was found that land use type is the main factor affecting the water quality. Therefore, activities, sources and pollutants related to different land use types including residential, industrial, agricultural and commercial are given high importance during the study. Semi-structured interviews were carried out with coordinators of different management sections of the regional councils in order to understand the associated management framework and issues. The issues identified from these interviews were used in preparing the decision making tool. Variables associated with the defined “value versus threat" decision making tool are obtained from the intensive literature review. The main recommendations provided for improvement of water quality in local city councils, include non-structural, structural and management controls and potential impacts of climate change.

Keywords: Storm water quality, Storm water Management, Land use, Strategy plan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
1301 A Novel Approach for Scheduling Rescue Robot Mission Using Decision Analysis

Authors: Rana Soltani-Zarrin, Sohrab Khanmohammadi

Abstract:

In this paper, a new method for multi criteria decision making is represented whichspecifies a trajectory satisfying desired criteria including minimization of time. A rescue robot is defined to perform certain tasks before the arrival of rescue team, including evaluation of the probability of explosion in the area, detecting human-beings, and providing preliminary aidsin case of identifying signs of life, so that the security of the surroundings will have enhanced significantly for the individuals inside the disaster zone as well as the rescue team. The main idea behind our technique is using the Program Evaluation and Review Technique analysis along with Critical Path Method and use the Multi Criteria Decision Making (MCDM) method to decidewhich set of activities must be performed first. Since the disastrous event in one area may be well contagious to others, it is one of the robot's priorities to evaluate the relative adversity of the situation, using the above methods and prioritize its mission.

Keywords: PERT, CPM, MCDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
1300 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model stands out within the realm of related literature as one of the few studies to employ N-DM in the context of academic staff selection. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: Analytical Hierarchy Process, Delphi Method, Multi-criteria decision making methods, neutrosophic set theory, personnel recruitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38
1299 Highlighting Document's Structure

Authors: Sylvie Ratté, Wilfried Njomgue, Pierre-André Ménard

Abstract:

In this paper, we present symbolic recognition models to extract knowledge characterized by document structures. Focussing on the extraction and the meticulous exploitation of the semantic structure of documents, we obtain a meaningful contextual tagging corresponding to different unit types (title, chapter, section, enumeration, etc.).

Keywords: Information retrieval, document structures, symbolic grammars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
1298 Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process

Authors: Viliam Makis, Farnoosh Naderkhani, Leila Jafari

Abstract:

In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example.

Keywords: Bayesian control chart, semi-Markov decision process, quality control, partially observable process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169
1297 A Decision Boundary based Discretization Technique using Resampling

Authors: Taimur Qureshi, Djamel A Zighed

Abstract:

Many supervised induction algorithms require discrete data, even while real data often comes in a discrete and continuous formats. Quality discretization of continuous attributes is an important problem that has effects on speed, accuracy and understandability of the induction models. Usually, discretization and other types of statistical processes are applied to subsets of the population as the entire population is practically inaccessible. For this reason we argue that the discretization performed on a sample of the population is only an estimate of the entire population. Most of the existing discretization methods, partition the attribute range into two or several intervals using a single or a set of cut points. In this paper, we introduce a technique by using resampling (such as bootstrap) to generate a set of candidate discretization points and thus, improving the discretization quality by providing a better estimation towards the entire population. Thus, the goal of this paper is to observe whether the resampling technique can lead to better discretization points, which opens up a new paradigm to construction of soft decision trees.

Keywords: Bootstrap, discretization, resampling, soft decision trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
1296 Military Attack Helicopter Selection Using Distance Function Measures in Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper aims to select the best military attack helicopter to purchase by the Armed Forces and provide greater reconnaissance and offensive combat capability in military operations. For this purpose, a multiple criteria decision analysis method integrated with the variance weight procedure was applied to the military attack helicopter selection problem. A real military aviation case problem is conducted to support the Armed Forces decision-making process and contributes to the better performance of the Armed Forces. Application of the methodology resulted in ranking lists for ordering and prioritizing attack helicopters, providing transparency and simplicity to the decision-making process. Nine military attack helicopter models were analyzed in the light of strategic, tactical, and operational criteria, considering attack helicopters. The selected military attack helicopter would be used for fire support and reconnaissance activities required by the Armed Forces operation. This study makes a valuable contribution to the problem of military attack helicopter selection, as it represents a state-of-the-art application of the MCDMA method to contribute to the solution of a real problem of the Armed Forces. The methodology presented in this paper can be used to solve real problems of a wide variety, especially strategic, tactical and operational, and is, therefore, a very useful method for decision making.

Keywords: aircraft selection, military attack helicopter selection, attack helicopter fleet planning, MCDMA, multiple criteria analysis, multiple criteria decision making analysis, distance function measure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 919
1295 Utilizing Ontologies Using Ontology Editor for Creating Initial Unified Modeling Language (UML)Object Model

Authors: Waralak Vongdoiwang Siricharoen

Abstract:

One of object oriented software developing problem is the difficulty of searching the appropriate and suitable objects for starting the system. In this work, ontologies appear in the part of supporting the object discovering in the initial of object oriented software developing. There are many researches try to demonstrate that there is a great potential between object model and ontologies. Constructing ontology from object model is called ontology engineering can be done; On the other hand, this research is aiming to support the idea of building object model from ontology is also promising and practical. Ontology classes are available online in any specific areas, which can be searched by semantic search engine. There are also many helping tools to do so; one of them which are used in this research is Protégé ontology editor and Visual Paradigm. To put them together give a great outcome. This research will be shown how it works efficiently with the real case study by using ontology classes in travel/tourism domain area. It needs to combine classes, properties, and relationships from more than two ontologies in order to generate the object model. In this paper presents a simple methodology framework which explains the process of discovering objects. The results show that this framework has great value while there is possible for expansion. Reusing of existing ontologies offers a much cheaper alternative than building new ones from scratch. More ontologies are becoming available on the web, and online ontologies libraries for storing and indexing ontologies are increasing in number and demand. Semantic and Ontologies search engines have also started to appear, to facilitate search and retrieval of online ontologies.

Keywords: Software Developing, Ontology, Ontology Library, Artificial Intelligent, Protégé, Object Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
1294 Toward Delegated Democracy: Vote by Yourself, or Trust Your Network

Authors: Hiroshi Yamakawa, Michiko Yoshida, Motohiro Tsuchiya

Abstract:

The recent development of Information and Communication Technology (ICT) enables new ways of "democratic" decision-making such as a page-ranking system, which estimates the importance of a web page based on indirect trust on that page shared by diverse group of unorganized individuals. These kinds of "democracy" have not been acclaimed yet in the world of real politics. On the other hand, a large amount of data about personal relations including trust, norms of reciprocity, and networks of civic engagement has been accumulated in a computer-readable form by computer systems (e.g., social networking systems). We can use these relations as a new type of social capital to construct a new democratic decision-making system based on a delegation network. In this paper, we propose an effective decision-making support system, which is based on empowering someone's vote whom you trust. For this purpose, we propose two new techniques: the first is for estimating entire vote distribution from a small number of votes, and the second is for estimating active voter choice to promote voting using a delegation network. We show that these techniques could increase the voting ratio and credibility of the whole decision by agent-based simulations.

Keywords: Delegation, network centrality, social network, voting ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
1293 A Proposal for a Secure and Interoperable Data Framework for Energy Digitalization

Authors: Hebberly Ahatlan

Abstract:

The process of digitizing energy systems involves transforming traditional energy infrastructure into interconnected, data-driven systems that enhance efficiency, sustainability, and responsiveness. As smart grids become increasingly integral to the efficient distribution and management of electricity from both fossil and renewable energy sources, the energy industry faces strategic challenges associated with digitalization and interoperability — particularly in the context of modern energy business models, such as virtual power plants (VPPs). The critical challenge in modern smart grids is to seamlessly integrate diverse technologies and systems, including virtualization, grid computing and service-oriented architecture (SOA), across the entire energy ecosystem. Achieving this requires addressing issues like semantic interoperability, Information Technology (IT) and Operational Technology (OT) convergence, and digital asset scalability, all while ensuring security and risk management. This paper proposes a four-layer digitalization framework to tackle these challenges, encompassing persistent data protection, trusted key management, secure messaging, and authentication of IoT resources. Data assets generated through this framework enable AI systems to derive insights for improving smart grid operations, security, and revenue generation. Furthermore, this paper also proposes a Trusted Energy Interoperability Alliance as a universal guiding standard in the development of this digitalization framework to support more dynamic and interoperable energy markets.

Keywords: Digitalization, IT/OT convergence, semantic interoperability, TEIA alliance, VPP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117
1292 Data-Driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: Startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827