Search results for: physical training
1925 Performance Evaluation of a Minimum Mean Square Error-Based Physical Sidelink Share Channel Receiver under Fading Channel
Authors: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis
Abstract:
Cellular Vehicle to Everything (C-V2X) is considered a promising solution for future autonomous driving. From Release 16 to Release 17, the Third Generation Partnership Project (3GPP) has introduced the definitions and services for 5G New Radio (NR) V2X. Since establishing a simulator for C-V2X communications is an essential preliminary step to achieve reliable and stable communication links, this paper proposes a complete framework of a link-level simulator based on the 3GPP specifications for the Physical Sidelink Share Channel (PSSCH) of the 5G NR Physical Layer (PHY). In this framework, several algorithms in the receiver part, i.e., sliding window in channel estimation and Minimum Mean Square Error (MMSE)-based equalization, are developed. Finally, the performance of the developed PSSCH receiver is validated through extensive simulations under different assumptions.
Keywords: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481924 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.
Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511923 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation
Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint
Abstract:
Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191922 A Semi-Classical Signal Analysis Method for the Analysis of Turbomachinery Flow Unsteadiness
Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati, Sofiane Khelladi, Farid Bakir
Abstract:
This paper presents the use of a semi-classical signal analysis method that has been developed recently for the analysis of turbomachinery flow unsteadiness. We will focus on the correlation between theSemi-Classical Signal Analysis parameters and some physical parameters in relation with turbomachinery features. To demonstrate the potential of the proposed approach, a static pressure signal issued from a rotor/stator interaction of a centrifugal pump is studied. Several configurations of the pump are compared.Keywords: Semi-classical signal analysis, turbomachines, newindices, physical parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14481921 Granularity Analysis for Spatio-Temporal Web Sensors
Authors: Shun Hattori
Abstract:
In recent years, many researches to mine the exploding Web world, especially User Generated Content (UGC) such as weblogs, for knowledge about various phenomena and events in the physical world have been done actively, and also Web services with the Web-mined knowledge have begun to be developed for the public. However, there are few detailed investigations on how accurately Web-mined data reflect physical-world data. It must be problematic to idolatrously utilize the Web-mined data in public Web services without ensuring their accuracy sufficiently. Therefore, this paper introduces the simplest Web Sensor and spatiotemporallynormalized Web Sensor to extract spatiotemporal data about a target phenomenon from weblogs searched by keyword(s) representing the target phenomenon, and tries to validate the potential and reliability of the Web-sensed spatiotemporal data by four kinds of granularity analyses of coefficient correlation with temperature, rainfall, snowfall, and earthquake statistics per day by region of Japan Meteorological Agency as physical-world data: spatial granularity (region-s population density), temporal granularity (time period, e.g., per day vs. per week), representation granularity (e.g., “rain" vs. “heavy rain"), and media granularity (weblogs vs. microblogs such as Tweets).Keywords: Granularity analysis, knowledge extraction, spatiotemporal data mining, Web credibility, Web mining, Web sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18821920 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.
Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661919 A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application
Authors: M A Hannan, A. Hussain, S. A. Samad, K. A. Ishak, A. Mohamed
Abstract:
This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object.Keywords: Algorithm, detection of human and non-human object, FNN, CNN, Image training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331918 Teachers’ Emotional Experience in Online Classes in Adult Education in Selected European Countries
Authors: Andreas Ahrens, Jelena Zascerinska
Abstract:
Emotions are crucial in online classes in adult education. Despite that, a little attention was devoted to the emotional experience of being an online teacher in the field of andragogy, and the online teacher’s emotional perspectives in ever changing environments have to be analysed. The paper aims at the analysis of teachers’ emotional experience in online classes in adult education in selected European countries. The research tends to propose implications for training of teachers who work in online classes in adult education. The survey was conducted in April 2022. In the selected European countries 78 respondents took part in the study. Among them, 30 respondents represented Germany, 28 respondents Greece, and 20 respondents were from Italy. The theoretical findings allow defining teacher emotional experience. The analysis of the elements of the respondents’ emotional experience allows concluding that teachers’ attitude to online classes has to be developed. The key content for teacher training is presented. Directions of further work are proposed.
Keywords: Adult education, online classes, teacher emotional experience, European countries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4381917 Dyadic Adjustment as a Mediator of the Relationship between Attachment, Attributional Style, and Violence in Male Batterers
Authors: Hélène Brisebois, Claude Bélanger, Marie-Pier Léger-Bélanger, Valérie Lamontagne
Abstract:
This study examines the mediating effects of male dyadic adjustment on the relationships between attachment and attributional styles, and both psychological and physical husband violence. Based on data from 68 married violent men recruited through community organizations that work with violent men, regression analyses showed that husbands- dyadic adjustment mediates the associations between avoidant attachment and attributional style, and psychological aggression, but not physical violence. Scientific and clinical implications are discussedKeywords: Attachment, attributions, dyadic adjustment, marital violence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18051916 Improving Air Temperature Prediction with Artificial Neural Networks
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27241915 Spatial Variability of Some Soil Properties in Mountain Rangelands of Northern Iran
Authors: Zeinab Jafarian Jeloudar, Hossien Kavianpoor, Abazar Esmali Ouri, Ataollah Kavian
Abstract:
In this paper spatial variability of some chemical and physical soil properties were investigated in mountain rangelands of Nesho, Mazandaran province, Iran. 110 soil samples from 0-30 cm depth were taken with systematic method on grid 30×30 m2 in regions with different vegetation cover and transported to laboratory. Then soil chemical and physical parameters including Acidity (pH), Electrical conductivity, Caco3, Bulk density, Particle density, total phosphorus, total Nitrogen, available potassium, Organic matter, Saturation moisture, Soil texture (percentage of sand, silt and clay), Sodium, Calcium, magnesium were measured in laboratory. Data normalization was performed then was done statistical analysis for description of soil properties and geostatistical analysis for indication spatial correlation between these properties and were perpetrated maps of spatial distribution of soil properties using Kriging method. Results indicated that in the study area Saturation moisture and percentage of Sand had highest and lowest spatial correlation respectively.Keywords: Chemical and physical soil properties, Iran, Spatial variability, Nesho Rangeland
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20211914 Inferential Reasoning for Heterogeneous Multi-Agent Mission
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.Keywords: Distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6401913 A New Physical Modeling for Multiquantum Well Structure APD Considering Nonuniformity of Electric Field in Active Regin
Authors: F. Barzegar, M. H. Sheikhi
Abstract:
In the present work we model a Multiquantum Well structure Separate Absorption and Charge Multiplication Avalanche Photodiode (MQW-SACM-APD), while the Absorption region coincide with the MQW. We consider the nonuniformity of electric field using split-step method in active region. This model is based on the carrier rate equations in the different regions of the device. Using the model we obtain the photocurrent, and dark current. As an example, InGaAs/InP SACM-APD and MQW-SACM-APD are simulated. There is a good agreement between the simulation and experimental results.Keywords: Avalanche Photodiode, Physical Model, MultiquantumWell, Split Step Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15241912 Effect of Coffee Grounds on Physical and Heating Value Properties of Sugarcane Bagasse Pellets
Authors: K. Rattawan, W. Intagun, W. Kanoksilapatham
Abstract:
Objective of this research is to study effect of coffee grounds on physical and heating value properties of sugarcane bagasse pellets. The coffee grounds were tested as an additive for pelletizing process of bagasse pellets. Pelletizing was performed using a Flat–die pellet mill machine. Moisture content of raw materials was controlled at 10-13%. Die temperature range during the process was 75-80 oC. Physical characteristics (bulk density and durability) of the bagasse pellet and pellets with 1-5% coffee ground were determined following the standard assigned by the Pellet Fuel Institute (PFI). The results revealed increasing values of 648±3.4, 659 ± 3.1, 679 ± 3.3 and 685 ± 3.1 kg/m3 (for pellet bulk density); and 98.7 ± 0.11, 99.2 ± 0.26, 99.3 ± 0.19 and 99.4 ± 0.07% (for pellet durability), respectively. In addition, the heating values of the coffee ground supplemented pellets (15.9 ± 1.16, 17.0 ± 1.23 and 18.8 ± 1.34 MJ/kg) were improved comparing to the non-supplemented control (14.9 ± 1.14 MJ/kg), respectively. The results indicated that both the bulk density and durability values of the bagasse pellets were increased with the increasing proportion of the coffee ground additive.
Keywords: Bagasse, coffee grounds, pelletizing, heating value, sugar cane bagasse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7661911 Automated, Objective Assessment of Pilot Performance in Simulated Environment
Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt
Abstract:
Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).
Keywords: Automated assessment, flight simulator, human factors, pilot training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8081910 The Marketing Mix in Small Sized Hotels: A Case of Pattaya, Thailand
Authors: Anyapak Prapannetivuth
Abstract:
The purpose of this research is to investigate the marketing mix that is perceived to be important for the small sized hotels in Pattaya. This research provides insights through a review of the marketing activities performed by the small sized hotels. Nine owners & marketing manager of small sized hotels and resorts, all local Chonburi people, were selected for an in-depth interview. The research suggests that seven marketing mixes (e.g. Product, Price, Place, Promotion, People, Physical Evidence and Process) were commonly used by these hotels, however, three types – People, Price and Physical Evidence were considered most important by the owners.Keywords: Marketing Mix, Marketing Tools, and Small Sized Hotels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34851909 Physical Activity and Cognitive Functioning Relationship in Children
Authors: Comfort Mokgothu
Abstract:
This study investigated the relation between processing information and fitness level of active (fit) and sedentary (unfit) children drawn from rural and urban areas in Botswana. It was hypothesized that fit children would display faster simple reaction time (SRT), choice reaction times (CRT) and movement times (SMT). 60, third grade children (7.0 – 9.0 years) were initially selected and based upon fitness testing, 45 participated in the study (15 each of fit urban, unfit urban, fit rural). All children completed anthropometric measures, skinfold testing and submaximal cycle ergometer testing. The cognitive testing included SRT, CRT, SMT and Choice Movement Time (CMT) and memory sequence length. Results indicated that the rural fit group exhibited faster SMT than the urban fit and unfit groups. For CRT, both fit groups were faster than the unfit group. Collectively, the study shows that the relationship that exists between physical fitness and cognitive function amongst the elderly can tentatively be extended to the pediatric population. Physical fitness could be a factor in the speed at which we process information, including decision making, even in children.
Keywords: Decision making, fitness, information processing, reaction time, cognition movement time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7931908 Effect of Different Oils on Quality of Deep-fried Dough Stick
Authors: Nuntaporn Aukkanit
Abstract:
The aim of this study was to determine the effect of oils on chemical, physical, and sensory properties of deep-fried dough stick. Five kinds of vegetable oil which were used for addition and frying consist of: palm oil, soybean oil, sunflower oil, rice bran oil, and canola oil. The results of this study showed that using different kinds of oil made significant difference in the quality of deep-fried dough stick. Deep-fried dough stick fried with the rice bran oil had the lowest moisture loss and oil absorption (p≤0.05), but it had some unsatisfactory physical properties (color, specific volume, density, and texture) and sensory characteristics. Nonetheless, deep-fried dough stick fried with the sunflower oil had moisture loss and oil absorption slightly more than the rice bran oil, but it had almost higher physical and sensory properties. Deep-fried dough sticks together with the sunflower oil did not have different sensory score from the palm oil, commonly used for production of deep-fried dough stick. These results indicated that addition and frying with the sunflower oil are appropriate for the production of deep-fried dough stick.
Keywords: Deep-fried dough stick, palm oil, sunflower oil, rice bran oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511907 Physical and Rheological Properties of Asphalt Modified with Cellulose Date Palm Fibers
Authors: Howaidi M. Al-Otaibi, Abdulrahman S. Al-Suhaibani, Hamad A. Alsoliman
Abstract:
Fibers are extensively used in civil engineering applications for many years. In this study, empty fruit bunch of date palm trees were used to produce cellulose fiber that were used as additives in the asphalt binder. Two sizes (coarse and fine) of cellulose fibers were pre-blended in PG64-22 binder with various contents of 1.5%, 3%, 4.5%, 6%, and 7.5% by weight of asphalt binder. The physical and rheological properties of fiber modified asphalt binders were tested by using conventional tests such as penetration, softening point and viscosity; and SHRP test such as dynamic shear rheometer. The results indicated that the fiber modified asphalt binders were higher in softening point, viscosity, and complex shear modulus, and lower in penetration compared to pure asphalt. The fiber modified binders showed an improvement in rheological properties since it was possible to raise the control binder (pure asphalt) PG from 64 to 70 by adding 6% (by weight) of either fine or coarse fibers. Such improvement in stiffness of fiber modified binder is expected to improve pavement resistance to rutting.
Keywords: Cellulose date palm fiber, fiber modified asphalt, physical properties, rheological properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18561906 On Developing a Core Guideline for English Language Training Programs in Business Settings
Authors: T. Ito, K. Kawaguchi, R. Ohta
Abstract:
The purpose of this study is to provide a guideline to assist globally-minded companies in developing task-based English- language programs for their employees. After conducting an online self-assessment questionnaire comprised of 45 job-related tasks, we analyzed responses received from 3,000 Japanese company employees and developed a checklist that considered three areas; i) the percentage of those who need to accomplish English-language tasks in their workplace (need for English), ii) a five-point self-assessment score (task performance level), and iii) the impact of previous task experience on perceived performance (experience factor). The 45 tasks were graded according to five proficiency levels. Our results helped us to create a core guideline that may assist companies in two ways: first, in helping determine which tasks employees with a certain English proficiency should be able to satisfactorily carry out, and secondly, to quickly prioritize which business-related English skills they would need in future English language programs.
Keywords: Business settings, Can-do statements, English language training programs, Self-assessment, Task experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14481905 Teager-Huang Analysis Applied to Sonar Target Recognition
Authors: J.-C. Cexus, A.O. Boudraa
Abstract:
In this paper, a new approach for target recognition based on the Empirical mode decomposition (EMD) algorithm of Huang etal. [11] and the energy tracking operator of Teager [13]-[14] is introduced. The conjunction of these two methods is called Teager-Huang analysis. This approach is well suited for nonstationary signals analysis. The impulse response (IR) of target is first band pass filtered into subsignals (components) called Intrinsic mode functions (IMFs) with well defined Instantaneous frequency (IF) and Instantaneous amplitude (IA). Each IMF is a zero-mean AM-FM component. In second step, the energy of each IMF is tracked using the Teager energy operator (TEO). IF and IA, useful to describe the time-varying characteristics of the signal, are estimated using the Energy separation algorithm (ESA) algorithm of Maragos et al .[16]-[17]. In third step, a set of features such as skewness and kurtosis are extracted from the IF, IA and IMF energy functions. The Teager-Huang analysis is tested on set of synthetic IRs of Sonar targets with different physical characteristics (density, velocity, shape,? ). PCA is first applied to features to discriminate between manufactured and natural targets. The manufactured patterns are classified into spheres and cylinders. One hundred percent of correct recognition is achieved with twenty three echoes where sixteen IRs, used for training, are free noise and seven IRs, used for testing phase, are corrupted with white Gaussian noise.
Keywords: Target recognition, Empirical mode decomposition, Teager-Kaiser energy operator, Features extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22831904 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261903 Preparation and Physical Characterization of Nanocomposites of PLA / Layered Silicates
Authors: I. Restrepo, S. Solorzano
Abstract:
This work was focused in to study the compatibility, dispersion and exfoliation of modified nanoclays in biodegradable polymers and evaluate its effect on the physical, mechanical and thermal properties on the biodegradable matrix used. The formulations have been developed with polylactic acid (PLA) and organically modified montmorillonite-type commercial nanoclays (Cloisite 15, Cloisite 20, and Cloisite 30B) in the presence of a plasticizer agent, specifically Polyethylene Glycol of low molecular weight. Different compositions were evaluated, in order to identify the influence of each nanoclayin the polymeric matrix. The mixtures were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (DRX), transmission electron microscopy (TEM) and Tensile Test. These tests have allowed understanding the behavior of each of the mixtures developed.
Keywords: Biopolymers, Nanoclays, polylacticacid (PLA), polymer blends.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26891902 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production
Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy
Abstract:
Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.
Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24151901 The Difficulties Witnessed by People with Intellectual Disability in Transition to Work in Saudi Arabia
Authors: Adel S. Alanazi
Abstract:
The transition of a student with a disability from school to work is the most crucial phase while moving from the stage of adolescence into early adulthood. In this process, young individuals face various difficulties and challenges in order to accomplish the next venture of life successfully. In this respect, this paper aims to examine the challenges encountered by the individuals with intellectual disabilities in transition to work in Saudi Arabia. For this purpose, this study has undertaken a qualitative research-based methodology; wherein interpretivist philosophy has been followed along with inductive approach and exploratory research design. The data for the research has been gathered with the help of semi-structured interviews, whose findings are analysed with the help of thematic analysis. Semi-structured interviews were conducted with parents of persons with intellectual disabilities, officials, supervisors and specialists of two vocational rehabilitation centres providing training to intellectually disabled students, in addition to that, directors of companies and websites in hiring those individuals. The total number of respondents for the interview was 15. The purposive sampling method was used to select the respondents for the interview. This sampling method is a non-probability sampling method which draws respondents from a known population and allows flexibility and suitability in selecting the participants for the study. The findings gathered from the interview revealed that the lack of awareness among their parents regarding the rights of their children who are intellectually disabled; the lack of adequate communication and coordination between various entities; concerns regarding their training and subsequent employment are the key difficulties experienced by the individuals with intellectual disabilities. Training in programmes such as bookbinding, carpentry, computing, agriculture, electricity and telephone exchange operations were involved as key training programmes. The findings of this study also revealed that information technology and media were playing a significant role in smoothing the transition to employment of individuals with intellectual disabilities. Furthermore, religious and cultural attitudes have been identified to be restricted for people with such disabilities in seeking advantages from job opportunities. On the basis of these findings, it can be implied that the information gathered through this study will serve to be highly beneficial for Saudi Arabian schools/ rehabilitation centres for individuals with intellectual disability to facilitate them in overcoming the problems they encounter during the transition to work.
Keywords: Intellectual disability, transition services, rehabilitation centre.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13261900 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.
Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13231899 Determination of Some Physical and Mechanical Properties of Pofaki Variety of Pea
Authors: M. Azadbakht, E. Ghajarjazi, E. Amiri, F. Abdigaol
Abstract:
In this research the effect of moisture at three levels (47, 57, and 67 w.b.%) on the physical properties of the Pofaki pea variety including, dimensions, geometric mean diameter, volume, sphericity index and the surface area was determined. The influence of different moisture levels (47, 57 and 67 w.b.%), in two loading orientation (longitudinal and transverse) and three loading speed (4,6 and 8 mm min-1) on the mechanical properties of pea such as maximum deformation, rupture force, rupture energy, toughness and the power to break the pea was investigated. It was observed in the physical properties that moisture changes were affective at 1% on, dimensions, geometric mean diameter, volume, sphericity index and the surface area. It was observed in the mechanical properties that moisture changes were effective at 1% on, maximum deformation, rupture force, rupture energy, toughness and the power to break. Loading speed was effective on maximum deformation, rupture force, rupture energy at 1% and it was effective on toughness at 5%. Loading orientation was effective on maximum deformation, rupture force, rupture energy, toughness at 1% and it was effective on power at 5%. The mutual effect of speed and orientation were effective on rupture energy at 1% and were effective on toughness at 5% probability. The mutual effect of moisture and speed were effective on rupture force and rupture energy at 1% and were effective on toughness 5% probability. The mutual effect of orientation and moisture on rupture energy and toughness were effective at 1%.
Keywords: Mechanical properties, Pea, Physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23411898 A Comparative Study of Cardio Respiratory Efficiency between Aquatic and Track and Field Performers
Authors: Sumanta Daw, Gopal Chandra Saha
Abstract:
The present study was conducted to explore the basic pulmonary functions which may generally vary according to the bio-physical characteristics including age, height, body weight, and environment etc. of the sports performers. Regular and specific training exercises also change the characteristics of an athlete’s prowess and produce a positive effect on the physiological functioning, mostly upon cardio-pulmonary efficiency and thereby improving the body mechanism. The objective of the present study was to compare the differences in cardio-respiratory functions between aquatics and track and field performers. As cardio-respiratory functions are influenced by pulse rate and blood pressure (systolic and diastolic), so both of the factors were also taken into consideration. The component selected under cardio-respiratory functions for the present study were i) FEVI/FVC ratio (forced expiratory volume divided by forced vital capacity ratio, i.e. the number represents the percentage of lung capacity to exhale in one second) ii) FVC1 (this is the amount of air which can force out of lungs in one second) and iii) FVC (forced vital capacity is the greatest total amount of air forcefully breathe out after breathing in as deeply as possible). All the three selected components of the cardio-respiratory efficiency were measured by spirometry method. Pulse rate was determined manually. The radial artery which is located on the thumb side of our wrist was used to assess the pulse rate. Blood pressure was assessed by sphygmomanometer. All the data were taken in the resting condition. 36subjects were selected for the present study out of which 18were water polo players and rest were sprinters. The age group of the subjects was considered between 18 to 23 years. In this study the obtained data inform of digital score were treated statistically to get result and draw conclusions. The Mean and Standard Deviation (SD) were used as descriptive statistics and the significant difference between the two subject groups was assessed with the help of statistical ‘t’-test. It was found from the study that all the three components i.e. FEVI/FVC ratio (p-value 0.0148 < 0.01), FVC1 (p-value 0.0010 < 0.01) and FVC (p-value 0.0067 < 0.01) differ significantly as water polo players proved to be better in terms of cardio-respiratory functions than sprinters. Thus study clearly suggests that the exercise training as well as the medium of practice arena associated with water polo players has played an important role to determine better cardio respiratory efficiency than track and field athletes. The outcome of the present study revealed that the lung function in land-based activities may not provide much impact than that of in water activities.
Keywords: Cardio-respiratory efficiency, spirometry, water polo players, sprinters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6101897 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12391896 Effectiveness of a Malaysian Workplace Intervention Study on Physical Activity Levels
Authors: M. Z. Bin Mohd Ghazali, N. C. Wilson, A. F. Bin Ahmad Fuad, M. A. H. B. Musa, M. U. Mohamad Sani, F. Zulkifli, M. S. Zainal Abidin
Abstract:
Physical activity levels are low in Malaysia and this study was undertaken to determine if a four week work-based intervention program would be effective in changing physical activity levels. The study was conducted in a Malaysian Government Department and had three stages: baseline data collection, four-week intervention and two-month post intervention data collection. During the intervention and two-month post intervention phases, physical activity levels (determined by a pedometer) and basic health profiles (BMI, abdominal obesity, blood pressure) were measured. Staff (58 males, 47 females) with an average age of 33 years completed baseline data collection. Pedometer steps averaged 7,102 steps/day at baseline, although male step counts were significantly higher than females (7,861 vs. 6114). Health profiles were poor: over 50% were overweight/obese (males 66%, females 40%); hypertension (males 23%, females 6%); excess waist circumference (males 52%, females 17%). While 86 staff participated in the intervention, only 49 regularly reported their steps. There was a significant increase (17%) in average daily steps from 8,965 (week 1) to 10,436 (week 4). Unfortunately, participation in the intervention program was avoided by the less healthy staff. Two months after the intervention there was no significant difference in average steps/day, despite the fact that 89% of staff reporting they planned to make long-term changes to their lifestyle. An unexpected average increase of 2kg in body weight occurred in participants, although this was less than the 5.6kg in non-participants. A number of recommendations are made for future interventions, including the conclusion that pedometers were a useful tool and popular with participants.
Keywords: Pedometers, walking, health, intervention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478