Search results for: multivariate adaptive regression spline
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1688

Search results for: multivariate adaptive regression spline

1298 Integrating Low and High Level Object Recognition Steps by Probabilistic Networks

Authors: András Barta, István Vajk

Abstract:

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Keywords: Object recognition, Bayesian network, Wavelets, Document processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
1297 Time Series Regression with Meta-Clusters

Authors: Monika Chuchro

Abstract:

This paper presents a preliminary attempt to apply classification of time series using meta-clusters in order to improve the quality of regression models. In this case, clustering was performed as a method to obtain subgroups of time series data with normal distribution from the inflow into wastewater treatment plant data, composed of several groups differing by mean value. Two simple algorithms, K-mean and EM, were chosen as a clustering method. The Rand index was used to measure the similarity. After simple meta-clustering, a regression model was performed for each subgroups. The final model was a sum of the subgroups models. The quality of the obtained model was compared with the regression model made using the same explanatory variables, but with no clustering of data. Results were compared using determination coefficient (R2), measure of prediction accuracy- mean absolute percentage error (MAPE) and comparison on a linear chart. Preliminary results allow us to foresee the potential of the presented technique.

Keywords: Clustering, Data analysis, Data mining, Predictive models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
1296 Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes

Abstract:

In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.

Keywords: Adaptive differentiators, Microsoft Flight Simulator, MQ-1 predator, second order sliding modes, Zlin-142.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
1295 Investigating Determinants of Medical User Expectations from Hospital Information System

Authors: G. Gürsel, K. H. Gülkesen, N. Zayim, A. Arifoğlu, O. Saka

Abstract:

User satisfaction is one of the most used success indicators in the research of information system (IS). Literature shows user expectations have great influence on user satisfaction. Both expectation and satisfaction of users are important for Hospital Information Systems (HIS). Education, IS experience, age, attitude towards change, business title, sex and working unit of the hospital, are examined as the potential determinant of the medical users’ expectations. Data about medical user expectations are collected by the “Expectation Questionnaire” developed for this study. Expectation data are used for calculating the Expectation Meeting Ratio (EMR) with the evaluation framework also developed for this study. The internal consistencies of the answers to the questionnaire are measured by Cronbach´s Alpha coefficient. The multivariate analysis of medical user’s EMRs of HIS is performed by forward stepwise binary logistic regression analysis. Education and business title is appeared to be the determinants of expectations from HIS.

Keywords: Evaluation, Fuzzy Logic, Hospital Information System, User Expectation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
1294 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

Authors: A. Kablan

Abstract:

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.

Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3400
1293 Performance of Compound Enhancement Algorithms on Dental Radiograph Images

Authors: S.A.Ahmad, M.N.Taib, N.E.A.Khalid, R.Ahmad, H.Taib

Abstract:

The purpose of this research is to compare the original intra-oral digital dental radiograph images with images that are enhanced using a combination of image processing algorithms. Intraoral digital dental radiograph images are often noisy, blur edges and low in contrast. A combination of sharpening and enhancement method are used to overcome these problems. Three types of proposed compound algorithms used are Sharp Adaptive Histogram Equalization (SAHE), Sharp Median Adaptive Histogram Equalization (SMAHE) and Sharp Contrast adaptive histogram equalization (SCLAHE). This paper presents an initial study of the perception of six dentists on the details of abnormal pathologies and improvement of image quality in ten intra-oral radiographs. The research focus on the detection of only three types of pathology which is periapical radiolucency, widen periodontal ligament space and loss of lamina dura. The overall result shows that SCLAHE-s slightly improve the appearance of dental abnormalities- over the original image and also outperform the other two proposed compound algorithms.

Keywords: intra-oral dental radiograph, histogram equalization, sharpening, CLAHE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
1292 Fault Detection of Drinking Water Treatment Process Using PCA and Hotelling's T2 Chart

Authors: Joval P George, Dr. Zheng Chen, Philip Shaw

Abstract:

This paper deals with the application of Principal Component Analysis (PCA) and the Hotelling-s T2 Chart, using data collected from a drinking water treatment process. PCA is applied primarily for the dimensional reduction of the collected data. The Hotelling-s T2 control chart was used for the fault detection of the process. The data was taken from a United Utilities Multistage Water Treatment Works downloaded from an Integrated Program Management (IPM) dashboard system. The analysis of the results show that Multivariate Statistical Process Control (MSPC) techniques such as PCA, and control charts such as Hotelling-s T2, can be effectively applied for the early fault detection of continuous multivariable processes such as Drinking Water Treatment. The software package SIMCA-P was used to develop the MSPC models and Hotelling-s T2 Chart from the collected data.

Keywords: Principal component analysis, hotelling's t2 chart, multivariate statistical process control, drinking water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
1291 Paranoid Thoughts and Thought Control Strategies in a Nonclinical Population

Authors: Takashi Yamauchi, Anju Sudo, Yoshihiko Tanno

Abstract:

Recently, it has been suggested that thought control strategies aimed at controlling unwanted thoughts may be used to cope with paranoid thoughts in both clinical and nonclinical samples. The current study aims to examine the type of thought control strategies that were associated with the frequency of paranoid thoughts in nonclinical samples. A total of 159 Japanese undergraduate students completed the two scales–the Paranoia Checklist and the Thought Control Questionnaire. A hierarchical multiple regression analysis demonstrated that worry-based control strategies were associated with paranoid thoughts, whereas distraction- and social-based control strategies were inversely associated with paranoid thoughts. Our findings suggest that in a nonclinical population, worry-based strategies may be especially maladaptive, whereas distraction- and social-based strategies may be adaptive to paranoid thoughts.

Keywords: Nonclinical population, paranoid thoughts, thoughtcontrol strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
1290 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.

Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 404
1289 Application of Adaptive Neuro-Fuzzy Inference System in Smoothing Transition Autoregressive Models

Authors: Ε. Giovanis

Abstract:

In this paper we propose and examine an Adaptive Neuro-Fuzzy Inference System (ANFIS) in Smoothing Transition Autoregressive (STAR) modeling. Because STAR models follow fuzzy logic approach, in the non-linear part fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation algorithm instead to nonlinear squares. Furthermore, additional fuzzy membership functions can be examined, beside the logistic and exponential, like the triangle, Gaussian and Generalized Bell functions among others. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.

Keywords: Forecasting, Neuro-Fuzzy, Smoothing transition, Time-series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
1288 Trajectory Estimation and Control of Vehicle using Neuro-Fuzzy Technique

Authors: B. Selma, S. Chouraqui

Abstract:

Nonlinear system identification is becoming an important tool which can be used to improve control performance. This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for controlling a car. The vehicle must follow a predefined path by supervised learning. Backpropagation gradient descent method was performed to train the ANFIS system. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in controlling the non linear system.

Keywords: Adaptive neuro-fuzzy inference system (ANFIS), Fuzzy logic, neural network, nonlinear system, control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
1287 A Complexity-Based Approach in Image Compression using Neural Networks

Authors: Hadi Veisi, Mansour Jamzad

Abstract:

In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.

Keywords: Adaptive image compression, Image complexity, Multi-layer perceptron neural network, JPEG Standard, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
1286 The Profit Trend of Cosmetics Products Using Bootstrap Edgeworth Approximation

Authors: Edlira Donefski, Lorenc Ekonomi, Tina Donefski

Abstract:

Edgeworth approximation is one of the most important statistical methods that has a considered contribution in the reduction of the sum of standard deviation of the independent variables’ coefficients in a Quantile Regression Model. This model estimates the conditional median or other quantiles. In this paper, we have applied approximating statistical methods in an economical problem. We have created and generated a quantile regression model to see how the profit gained is connected with the realized sales of the cosmetic products in a real data, taken from a local business. The Linear Regression of the generated profit and the realized sales was not free of autocorrelation and heteroscedasticity, so this is the reason that we have used this model instead of Linear Regression. Our aim is to analyze in more details the relation between the variables taken into study: the profit and the finalized sales and how to minimize the standard errors of the independent variable involved in this study, the level of realized sales. The statistical methods that we have applied in our work are Edgeworth Approximation for Independent and Identical distributed (IID) cases, Bootstrap version of the Model and the Edgeworth approximation for Bootstrap Quantile Regression Model. The graphics and the results that we have presented here identify the best approximating model of our study.

Keywords: Bootstrap, Edgeworth approximation, independent and Identical distributed, quantile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447
1285 Development of a Speed Sensorless IM Drives

Authors: Dj. Cherifi, Y. Miloud, A. Tahri

Abstract:

The primary objective of this paper is to elimination of the problem of sensitivity to parameter variation of induction motor drive. The proposed sensorless strategy is based on an algorithm permitting a better simultaneous estimation of the rotor speed and the stator resistance including an adaptive mechanism based on the lyaponov theory. To study the reliability and the robustness of the sensorless technique to abnormal operations, some simulation tests have been performed under several cases.

The proposed sensorless vector control scheme showed a good performance behavior in the transient and steady states, with an excellent disturbance rejection of the load torque.

Keywords: Induction Motor Drive, field-oriented control, adaptive speed observer, stator resistance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
1284 Two-dimensional Differential Transform Method for Solving Linear and Non-linear Goursat Problem

Authors: H. Taghvafard, G. H. Erjaee

Abstract:

A method for solving linear and non-linear Goursat problem is given by using the two-dimensional differential transform method. The approximate solution of this problem is calculated in the form of a series with easily computable terms and also the exact solutions can be achieved by the known forms of the series solutions. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Several examples are given to demonstrate the reliability and the performance of the presented method.

Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
1283 A WIP Control Based On an Intelligent Controller

Authors: Chih-Hui Chiu, Chun-Hsien Lin

Abstract:

In this study, a robust intelligent backstepping tracking control (RIBTC) system combined with adaptive output recurrent cerebellar model articulation control (AORCMAC) and H∞ control technique is proposed for wheeled inverted pendulums (WIPs) real-time control with exact system dynamics unknown. Moreover, a robust H∞ controller is designed to attenuate the effect of the residual approximation errors and external disturbances with desired attenuation level. The experimental results indicate that the WIPs can stand upright stably when using the proposed RIBTC.

Keywords: Wheeled inverted pendulum, backsteppingtracking control, H∞ control, adaptive output recurrentcerebellar model articulation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
1282 Cognitive SATP for Airborne Radar Based on Slow-Time Coding

Authors: Fanqiang Kong, Jindong Zhang, Daiyin Zhu

Abstract:

Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method.

Keywords: Space-time adaptive processing (STAP), signal-to-clutter ratio, slow-time coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
1281 Fast Algorithm of Infrared Point Target Detection in Fluctuant Background

Authors: Yang Weiping, Zhang Zhilong, Li Jicheng, Chen Zengping, He Jun

Abstract:

The background estimation approach using a small window median filter is presented on the bases of analyzing IR point target, noise and clutter model. After simplifying the two-dimensional filter, a simple method of adopting one-dimensional median filter is illustrated to make estimations of background according to the characteristics of IR scanning system. The adaptive threshold is used to segment canceled image in the background. Experimental results show that the algorithm achieved good performance and satisfy the requirement of big size image-s real-time processing.

Keywords: Point target, background estimation, median filter, adaptive threshold, target detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
1280 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds are not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: Structural health monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
1279 Methods for Data Selection in Medical Databases: The Binary Logistic Regression -Relations with the Calculated Risks

Authors: Cristina G. Dascalu, Elena Mihaela Carausu, Daniela Manuc

Abstract:

The medical studies often require different methods for parameters selection, as a second step of processing, after the database-s designing and filling with information. One common task is the selection of fields that act as risk factors using wellknown methods, in order to find the most relevant risk factors and to establish a possible hierarchy between them. Different methods are available in this purpose, one of the most known being the binary logistic regression. We will present the mathematical principles of this method and a practical example of using it in the analysis of the influence of 10 different psychiatric diagnostics over 4 different types of offences (in a database made from 289 psychiatric patients involved in different types of offences). Finally, we will make some observations about the relation between the risk factors hierarchy established through binary logistic regression and the individual risks, as well as the results of Chi-squared test. We will show that the hierarchy built using the binary logistic regression doesn-t agree with the direct order of risk factors, even if it was naturally to assume this hypothesis as being always true.

Keywords: Databases, risk factors, binary logisticregression, hierarchy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
1278 Second Order Admissibilities in Multi-parameter Logistic Regression Model

Authors: Chie Obayashi, Hidekazu Tanaka, Yoshiji Takagi

Abstract:

In multi-parameter family of distributions, conditions for a modified maximum likelihood estimator to be second order admissible are given. Applying these results to the multi-parameter logistic regression model, it is shown that the maximum likelihood estimator is always second order inadmissible. Also, conditions for the Berkson estimator to be second order admissible are given.

Keywords: Berkson estimator, modified maximum likelihood estimator, Multi-parameter logistic regression model, second order admissibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1277 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet

Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu

Abstract:

In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.

Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1276 Analyzing the Factors Influencing Exclusive Breastfeeding Using the Generalized Poisson Regression Model

Authors: Cheika Jahangeer, Naushad Mamode Khan, Maleika Heenaye-Mamode Khan

Abstract:

Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. Exclusive breastfeeding during the first 6 months of life is of fundamental importance because it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, in developed countries, exclusive breastfeeding has decreased the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we study the factors that influence exclusive breastfeeding and use the Generalized Poisson regression model to analyze the practices of exclusive breastfeeding in Mauritius. We develop two sets of quasi-likelihood equations (QLE)to estimate the parameters.

Keywords: Exclusive breastfeeding, Regression model, Quasilikelihood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
1275 Speaker Independent Quranic Recognizer Basedon Maximum Likelihood Linear Regression

Authors: Ehab Mourtaga, Ahmad Sharieh, Mousa Abdallah

Abstract:

An automatic speech recognition system for the formal Arabic language is needed. The Quran is the most formal spoken book in Arabic, it is spoken all over the world. In this research, an automatic speech recognizer for Quranic based speakerindependent was developed and tested. The system was developed based on the tri-phone Hidden Markov Model and Maximum Likelihood Linear Regression (MLLR). The MLLR computes a set of transformations which reduces the mismatch between an initial model set and the adaptation data. It uses the regression class tree, as well as, estimates a set of linear transformations for the mean and variance parameters of a Gaussian mixture HMM system. The 30th Chapter of the Quran, with five of the most famous readers of the Quran, was used for the training and testing of the data. The chapter includes about 2000 distinct words. The advantages of using the Quranic verses as the database in this developed recognizer are the uniqueness of the words and the high level of orderliness between verses. The level of accuracy from the tested data ranged 68 to 85%.

Keywords: Hidden Markov Model (HMM), MaximumLikelihood Linear Regression (MLLR), Quran, Regression ClassTree, Speech Recognition, Speaker-independent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
1274 Analyzing Data on Breastfeeding Using Dispersed Statistical Models

Authors: Naushad Mamode Khan, Cheika Jahangeer, Maleika Heenaye-Mamode Khan

Abstract:

Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. Exclusive breastfeeding during the first 6 months of life is very important as it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, it helps to reduce the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we make a survey of the factors that influence exclusive breastfeeding and use two dispersed statistical models to analyze data. The models are the Generalized Poisson regression model and the Com-Poisson regression models.

Keywords: Exclusive breastfeeding, regression model, generalized poisson, com-poisson.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
1273 Prediction of Post Underwater Shock Properties of Polymer - Clay/Silica Hybrid Nanocomposites through Regression Models

Authors: D. Lingaraju, K. Ramji, M. Pramiladevi, U. Rajyalakshmi

Abstract:

Exploding concentrated underwater charges to damage underwater structures such as ship hulls is a part of naval warfare strategies. Adding small amounts of foreign particles (like clay or silica) of nanosize significantly improves the engineering properties of the polymers. In the present work the clay in terms 1, 2 and 3 percent by weight was surface treated with a suitable silane agent. The hybrid nanocomposite was prepared by the hand lay-up technique. Mathematical regression models have been employed for theoretical prediction. This will result in considerable savings in terms of project time, effort and cost.

Keywords: ANOVA, clay, halloysite, nanocomposites, underwater shock, regression, silica.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
1272 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 60O. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby, suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modeling mass transfer by multiple plunging jets.

Keywords: Mass transfer, multiple plunging jets, multi-linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
1271 Assessment of EU Competitiveness Factors by Multivariate Methods

Authors: L. Melecký

Abstract:

Measurement of competitiveness between countries or regions is an important topic of many economic analysis and scientific papers. In European Union (EU), there is no mainstream approach of competitiveness evaluation and measuring. There are many opinions and methods of measurement and evaluation of competitiveness between states or regions at national and European level. The methods differ in structure of using the indicators of competitiveness and ways of their processing. The aim of the paper is to analyze main sources of competitive potential of the EU Member States with the help of Factor analysis (FA) and to classify the EU Member States to homogeneous units (clusters) according to the similarity of selected indicators of competitiveness factors by Cluster analysis (CA) in reference years 2000 and 2011. The theoretical part of the paper is devoted to the fundamental bases of competitiveness and the methodology of FA and CA methods. The empirical part of the paper deals with the evaluation of competitiveness factors in the EU Member States and cluster comparison of evaluated countries by cluster analysis. 

Keywords: Competitiveness, cluster analysis, EU, factor analysis, multivariate methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
1270 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

Authors: Joonas Pääkkönen

Abstract:

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
1269 Multivariate Statistical Analysis of Decathlon Performance Results in Olympic Athletes (1988-2008)

Authors: Jaebum Park, Vladimir M. Zatsiorsky

Abstract:

The performance results of the athletes competed in the 1988-2008 Olympic Games were analyzed (n = 166). The data were obtained from the IAAF official protocols. In the principal component analysis, the first three principal components explained 70% of the total variance. In the 1st principal component (with 43.1% of total variance explained) the largest factor loadings were for 100m (0.89), 400m (0.81), 110m hurdle run (0.76), and long jump (–0.72). This factor can be interpreted as the 'sprinting performance'. The loadings on the 2nd factor (15.3% of the total variance) presented a counter-intuitive throwing-jumping combination: the highest loadings were for throwing events (javelin throwing 0.76; shot put 0.74; and discus throwing 0.73) and also for jumping events (high jump 0.62; pole vaulting 0.58). On the 3rd factor (11.6% of total variance), the largest loading was for 1500 m running (0.88); all other loadings were below 0.4.

Keywords: Decathlon, principal component analysis, Olympic Games, multivariate statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2815