Search results for: Attention Multiple Instance Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4345

Search results for: Attention Multiple Instance Learning

265 Critical Success Factors Influencing Construction Project Performance for Different Objectives: Procurement Phase

Authors: Samart Homthong, Wutthipong Moungnoi

Abstract:

Critical success factors (CSFs) and the criteria to measure project success have received much attention over the decades and are among the most widely researched topics in the context of project management. However, although there have been extensive studies on the subject by different researchers, to date, there has been little agreement on the CSFs. The aim of this study is to identify the CSFs that influence the performance of construction projects, and determine their relative importance for different objectives across five stages in the project life cycle. A considerable literature review was conducted that resulted in the identification of 179 individual factors. These factors were then grouped into nine major categories. A questionnaire survey was used to collect data from three groups of respondents: client representatives, consultants, and contractors. Out of 164 questionnaires distributed, 93 were returned, yielding a response rate of 56.7%. Using the mean score, relative importance index, and weighted average method, the top 10 critical factors for each category were identified. The agreement of survey respondents on those categorised factors were analysed using Spearman’s rank correlation. A one-way analysis of variance was then performed to determine whether the mean scores among the various groups of respondents were statistically significant. The findings indicate the most CSFs in each category in procurement phase are: proper procurement programming of materials (time), stability in the price of materials (cost), and determining quality in the construction (quality). They are then followed by safety equipment acquisition and maintenance (health and safety), budgeting allowed in a contractual arrangement for implementing environmental management activities (environment), completeness of drawing documents (productivity), accurate measurement and pricing of bill of quantities (risk management), adequate communication among the project team (human resource), and adequate cost control measures (client satisfaction). An understanding of CSFs would help all interested parties in the construction industry to improve project performance. Furthermore, the results of this study would help construction professionals and practitioners take proactive measures for effective project management.

Keywords: Critical success factors, procurement phase, project life cycle, project performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
264 Shear Strength Characteristics of Sand-Particulate Rubber Mixture

Authors: Firas Daghistani, Hossam Abuel Naga

Abstract:

Waste tyres is an ongoing global problem that has a negative effect on the environment. Waste tyres are discarded in stockpiles where they provide harm to the environment in many ways. Finding applications to these materials can help in reducing this global problem. One of these applications is recycling these waste materials and using them in geotechnical engineering. Recycled waste tyre particulates can be mixed with sand to form a lightweight material with varying shear strength characteristics. This research further investigates the inclusion of particulate rubber to sand and whether it can increase or decrease the shear strength characteristics of the mixture. For the experiment, a series of direct shear tests was performed on a poorly graded sand with a mean particle size of 0.32 mm mixed with recycled poorly graded particulate rubber with a mean particle size of 0.51 mm. The shear tests were performed on four normal stresses 30, 55, 105, 200 kPa at a shear rate of 1 mm/minute. Different percentages of particulate rubber content were used in the mixture i.e., 10%, 20%, 30% and 50% of sand dry weight at three density states namely loose, slight dense, and dense state. The size ratio of the mixture, which is the mean particle size of the particulate rubber divided by the mean particle size of the sand, was 1.59. The results identified multiple parameters that can influence the shear strength of the mixture. The parameters were: normal stress, particulate rubber content, mixture gradation, mixture size ratio, and the mixture’s density. The inclusion of particulate rubber to sand showed a decrease to the internal friction angle, and an increase to the apparent cohesion. Overall, the inclusion of particulate rubber did not have a significant influence on the shear strength of the mixture. For all the dense states at the low normal stresses 30, and 55 kPa, the inclusion of particulate rubber showed a slight increase in the shear strength where the peak was at 20-30% rubber content of the sand’s dry weight. On the other hand, at the high normal stresses 105, and 200 kPa, there was a slight decrease in the shear strength.

Keywords: Direct shear, granular material, sand-rubber mixture, shear strength, waste material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
263 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: Artificial Neural Network, Taguchi Method, Real Estate Valuation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065
262 A Retrospective Study of Vaginal Stenosis Following Treatment of Cervical Cancers and the Effectiveness of Rehabilitation Interventions

Authors: Manjusha R. Vagal, Shyam K. Shrivastava, Umesh Mahantshetty, Sudeep Gupta, Supriya Chopra, Reena Engineer, Amita Maheshwari, Atul Buduk

Abstract:

Vaginal stenosis is a common side effect associated with pelvic radiotherapy in cervical cancer patients which contributes negatively to woman’s health and prevents adequate vaginal/cervical examination. Vaginal dilation with a dilator is routine practice and is internationally advocated as a prophylactic measure to preserve vaginal patency. This retrospective study was carried out with the aim to know the usefulness of vaginal dilation following pelvic radiation therapy in cervical cancer patients in India. Data from medical records of 183 cervical cancer patients, which met the study criteria, were collected related to the stage of the disease, treatment received, commencement period of dilation post radiation therapy, sexual status and side effects associated to dilation practice. Data related to vaginal dimensions as per the length of insertion of a small, medium and large dilator were collected on regular follow-ups until 36 months and/or more. Vaginal dimensions as measured with the length of medium dilator insertion were used for analysis of dilation therapy results using paired t-test. Patients who underwent vaginal dilation with dilator maintained vaginal patency, also the mean vaginal length significantly increased, from 8.02 cm ± 2.69 to 9.96 ± 2.89 cm with a p value <0.001. There was no significant difference found on vaginal patency with different intervals of initiation of dilation therapy. At the third year and more following dilation therapy, significant increase in vaginal length observed with a p value of 0.0001 in both sexually active and inactive patients. Compilation of vaginal dosage during brachytherapy was inadequate, and hence, the secondary objective of the study to determine the effect of radiotherapy on the outcome of rehabilitation intervention was not studied in detail. This retrospective study has found that dilation therapy with vaginal dilators post pelvic radiotherapy is effective in preventing vaginal stenosis and improving vaginal patency and cannot be substituted with vaginal intercourse. Sexual quality of life assessment in the Indian population needs much attention.

Keywords: Dilator, sexually active, vaginal dilation, vaginal stenosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
261 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 678
260 Streamwise Vorticity in the Wake of a Sliding Bubble

Authors: R. O’Reilly Meehan, D. B. Murray

Abstract:

In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.

Keywords: Bubbly flow, particle image velocimetry, two-phase flow, wake structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
259 A Weighted-Profiling Using an Ontology Basefor Semantic-Based Search

Authors: Hikmat A. M. Abd-El-Jaber, Tengku M. T. Sembok

Abstract:

The information on the Web increases tremendously. A number of search engines have been developed for searching Web information and retrieving relevant documents that satisfy the inquirers needs. Search engines provide inquirers irrelevant documents among search results, since the search is text-based rather than semantic-based. Information retrieval research area has presented a number of approaches and methodologies such as profiling, feedback, query modification, human-computer interaction, etc for improving search results. Moreover, information retrieval has employed artificial intelligence techniques and strategies such as machine learning heuristics, tuning mechanisms, user and system vocabularies, logical theory, etc for capturing user's preferences and using them for guiding the search based on the semantic analysis rather than syntactic analysis. Although a valuable improvement has been recorded on search results, the survey has shown that still search engines users are not really satisfied with their search results. Using ontologies for semantic-based searching is likely the key solution. Adopting profiling approach and using ontology base characteristics, this work proposes a strategy for finding the exact meaning of the query terms in order to retrieve relevant information according to user needs. The evaluation of conducted experiments has shown the effectiveness of the suggested methodology and conclusion is presented.

Keywords: information retrieval, user profiles, semantic Web, ontology, search engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218
258 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare

Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl

Abstract:

Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.

Keywords: Average run length, Bernoulli CUSUM chart, beta binomial posterior predictive distribution, clinical indicator, health care organization, highest posterior density interval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
257 Synchronous Courses Attendance in Distance Higher Education: Case Study of a Computer Science Department

Authors: Thierry Eude

Abstract:

The use of videoconferencing platforms adapted to teaching offers students the opportunity to take distance education courses in much the same way as traditional in-class training. The sessions can be recorded and they allow students the option of following the courses synchronously or asynchronously. Three typical profiles can then be distinguished: students who choose to follow the courses synchronously, students who could attend the course in synchronous mode but choose to follow the session off-line, and students who follow the course asynchronously as they cannot attend the course when it is offered because of professional or personal constraints. Our study consists of observing attendance at all distance education courses offered in the synchronous mode by the Computer Science and Software Engineering Department at Laval University during 10 consecutive semesters. The aim is to identify factors that influence students in their choice of attending the distance courses in synchronous mode. It was found that participation tends to be relatively stable over the years for any one semester (fall, winter summer) and is similar from one course to another, although students may be increasingly familiar with the synchronous distance education courses. Average participation is around 28%. There may be deviations, but they concern only a few courses during certain semesters, suggesting that these deviations would only have occurred because of the composition of particular promotions during specific semesters. Furthermore, course schedules have a great influence on the attendance rate. The highest rates are all for courses which are scheduled outside office hours.

Keywords: Attendance, distance undergraduate education in computer science, student behavior, synchronous e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
256 Performance Optimization of Data Mining Application Using Radial Basis Function Classifier

Authors: M. Govindarajan, R. M.Chandrasekaran

Abstract:

Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.

Keywords: Text Data Mining, Comparative Cross-validation, Radial Basis Function, runtime, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
255 Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon

Authors: Arafa A. Alholaisi, Jamal H. Madani, M. A. Alvi

Abstract:

The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-9,11Li elastic scattering differential cross sections in the energy range  to  MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich 11Li nucleus, the estimated matter radius is found to be 3.446 fm which is quite large as compared to so known experimental value 3.12 fm. The results of microscopic optical model based calculation by applying Bethe-Brueckner–Hartree–Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-11Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 fm. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-9Li and p-11Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections σR for p-11Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it.

Keywords: Bhagwat-Gambhir-Patil density, coulomb modified Glauber model, halo nucleus, optical limit approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
254 Levels of Students’ Understandings of Electric Field Due to a Continuous Charged Distribution: A Case Study of a Uniformly Charged Insulating Rod

Authors: Thanida Sujarittham, Narumon Emarat, Jintawat Tanamatayarat, Kwan Arayathanitkul, Suchai Nopparatjamjomras

Abstract:

Electric field is an important fundamental concept in electrostatics. In high-school, generally Thai students have already learned about definition of electric field, electric field due to a point charge, and superposition of electric fields due to multiple-point charges. Those are the prerequisite basic knowledge students holding before entrancing universities. In the first-year university level, students will be quickly revised those basic knowledge and will be then introduced to a more complicated topic—electric field due to continuous charged distributions. We initially found that our freshman students, who were from the Faculty of Science and enrolled in the introductory physic course (SCPY 158), often seriously struggled with the basic physics concepts—superposition of electric fields and inverse square law and mathematics being relevant to this topic. These also then resulted on students’ understanding of advanced topics within the course such as Gauss's law, electric potential difference, and capacitance. Therefore, it is very important to determine students' understanding of electric field due to continuous charged distributions. The open-ended question about sketching net electric field vectors from a uniformly charged insulating rod was administered to 260 freshman science students as pre- and post-tests. All of their responses were analyzed and classified into five levels of understandings. To get deep understanding of each level, 30 students were interviewed toward their individual responses. The pre-test result found was that about 90% of students had incorrect understanding. Even after completing the lectures, there were only 26.5% of them could provide correct responses. Up to 50% had confusions and irrelevant ideas. The result implies that teaching methods in Thai high schools may be problematic. In addition for our benefit, these students’ alternative conceptions identified could be used as a guideline for developing the instructional method currently used in the course especially for teaching electrostatics.

Keywords: Electrostatics Electric field due to continuous charged distributions, inverse square law, superposition principle, levels of student understandings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
253 A Simulated Environment Approach to Investigate the Effect of Adversarial Perturbations on Traffic Sign for Automotive Software-in-Loop Testing

Authors: Sunil Patel, Pallab Maji

Abstract:

To study the effect of adversarial attack environment must be controlled. Autonomous driving includes mainly 5 phases sense, perceive, map, plan, and drive. Autonomous vehicles sense their surrounding with the help of different sensors like cameras, radars, and lidars. Deep learning techniques are considered Blackbox and found to be vulnerable to adversarial attacks. In this research, we study the effect of the various known adversarial attacks with the help of the Unreal Engine-based, high-fidelity, real-time raytraced simulated environment. The goal of this experiment is to find out if adversarial attacks work in moving vehicles and if an unknown network may be targeted. We discovered that the existing Blackbox and Whitebox attacks have varying effects on different traffic signs. We observed that attacks that impair detection in static scenarios do not have the same effect on moving vehicles. It was found that some adversarial attacks with hardly noticeable perturbations entirely blocked the recognition of certain traffic signs. We observed that the daylight condition has a substantial impact on the model's performance by simulating the interplay of light on traffic signs. Our findings have been found to closely resemble outcomes encountered in the real world.

Keywords: Adversarial attack simulation, computer simulation, ray-traced environment, realistic simulation, unreal engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434
252 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition

Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu

Abstract:

In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.

Keywords: Biometry, image processing, pattern recognition, speech analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
251 Visual Preferences of Elementary School Children with Autism Spectrum Disorder: An Experimental Study

Authors: Larissa Pliska, Isabel Neitzel, Michael Buschermöhle, Olga Kunina-Habenicht, Ute Ritterfeld

Abstract:

Visual preferences, which can be assessed using eye tracking technologies, are considered one of the defining hallmarks of autism spectrum disorder (ASD). Specifically, children with ASD show a decreased preference for social images rather than geometric images compared to typically developed (TD) children. Such differences are already prevalent at a very early age and indicate the severity of the disorder: toddlers with ASD who preferred geometric images when confronted with social and geometric images showed higher ASD symptom severity than toddlers with ASD who showed higher social attention. Furthermore, the complexity of social images (one child playing vs. two children playing together) as well as the mode of stimulus presentation (video or image), are not decisive for the marker. The average age of diagnosis for ASD in Germany is 6.5 years, and visual preference data on this age group are missing. In the present study, we therefore investigated whether visual preferences persist into school age. We examined the visual preferences of 16 boys aged 6 to 11 years with ASD and unimpaired cognition as well as TD children (1:1 matching based on children's age and the parent's level of education) within an experimental setting. Different stimulus presentation formats (images vs. videos) and different levels of stimulus complexity were included. Children with and without ASD received pairs of social and non-social images and video stimuli on a screen while eye movements (i.e., eye position and gaze direction) were recorded. For this specific use case, KIZMO GmbH developed a customized, native iOS app (KIZMO Face-Analyzer) for use on iPads. Neither the format of stimulus presentation nor the complexity of the social images had a significant effect on the visual preference of children with and without ASD in this study. Despite the tendency for a difference between the groups for the video stimuli, there were no significant differences. Overall, no statistical differences in visual preference occurred between boys with and without ASD, suggesting that gaze preference in these groups is similar at elementary school age. One limitation is that the children with ASD were already receiving ASD-specific intervention. The potential of a visual preference task as an indicator of ASD can be emphasized. The article discusses the clinical relevance of this marker in elementary school children.

Keywords: Autism spectrum disorder, eye tracking, hallmark, visual preference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28
250 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, Fuzzy c means, Liver segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
249 MPPT Operation for PV Grid-connected System using RBFNN and Fuzzy Classification

Authors: A. Chaouachi, R. M. Kamel, K. Nagasaka

Abstract:

This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Function Neural Networks (RBFNN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated RBFNN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and non-linear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network.

Keywords: MPPT, neuro-fuzzy, RBFN, grid-connected, photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
248 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval

Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema

Abstract:

The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.

Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
247 Potential of Irish Orientated Strand Board in Bending Active Structures

Authors: M. Collins, B. O’Regan, T. Cosgrove

Abstract:

To determine the potential of a low cost Irish engineered timber product to replace high cost solid timber for use in bending active structures such as gridshells a single Irish engineered timber product in the form of orientated strand board (OSB) was selected. A comparative study of OSB and solid timber was carried out to determine the optimum properties that make a material suitable for use in gridshells. Three parameters were identified to be relevant in the selection of a material for gridshells. These three parameters are the strength to stiffness ratio, the flexural stiffness of commercially available sections, and the variability of material and section properties. It is shown that when comparing OSB against solid timber, OSB is a more suitable material for use in gridshells that are at the smaller end of the scale and that have tight radii of curvature. Typically, for solid timber materials, stiffness is used as an indicator for strength and engineered timber is no different. Thus, low flexural stiffness would mean low flexural strength. However, when it comes to bending active gridshells, OSB offers a significant advantage. By the addition of multiple layers, an increased section size is created, thus endowing the structure with higher stiffness and higher strength from initial low stiffness and low strength materials while still maintaining tight radii of curvature. This allows OSB to compete with solid timber on large scale gridshells. Additionally, a preliminary sustainability study using a set of sustainability indicators was carried out to determine the relative sustainability of building a large-scale gridshell in Ireland with a primary focus on economic viability but a mention is also given to social and environmental aspects. For this, the Savill garden gridshell in the UK was used as the functional unit with the sustainability of the structural roof skeleton constructed from UK larch solid timber being compared with the same structure using Irish OSB. Albeit that the advantages of using commercially available OSB in a bending active gridshell are marginal and limited to specific gridshell applications, further study into an optimised engineered timber product is merited.

Keywords: Bending active gridshells, High end timber structures, Low cost material, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
246 In Search of a Suitable Neural Network Capable of Fast Monitoring of Congestion Level in Electric Power Systems

Authors: Pradyumna Kumar Sahoo, Prasanta Kumar Satpathy

Abstract:

This paper aims at finding a suitable neural network for monitoring congestion level in electrical power systems. In this paper, the input data has been framed properly to meet the target objective through supervised learning mechanism by defining normal and abnormal operating conditions for the system under study. The congestion level, expressed as line congestion index (LCI), is evaluated for each operating condition and is presented to the NN along with the bus voltages to represent the input and target data. Once, the training goes successful, the NN learns how to deal with a set of newly presented data through validation and testing mechanism. The crux of the results presented in this paper rests on performance comparison of a multi-layered feed forward neural network with eleven types of back propagation techniques so as to evolve the best training criteria. The proposed methodology has been tested on the standard IEEE-14 bus test system with the support of MATLAB based NN toolbox. The results presented in this paper signify that the Levenberg-Marquardt backpropagation algorithm gives best training performance of all the eleven cases considered in this paper, thus validating the proposed methodology.

Keywords: Line congestion index, critical bus, contingency, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
245 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems

Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.

Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
244 Present Status, Driving Forces and Pattern Optimization of Territory in Hubei Province, China

Authors: Tingke Wu, Man Yuan

Abstract:

“National Territorial Planning (2016-2030)” was issued by the State Council of China in 2017. As an important initiative of putting it into effect, territorial planning at provincial level makes overall arrangement of territorial development, resources and environment protection, comprehensive renovation and security system construction. Hubei province, as the pivot of the “Rise of Central China” national strategy, is now confronted with great opportunities and challenges in territorial development, protection, and renovation. Territorial spatial pattern experiences long time evolution, influenced by multiple internal and external driving forces. It is not clear what are the main causes of its formation and what are effective ways of optimizing it. By analyzing land use data in 2016, this paper reveals present status of territory in Hubei. Combined with economic and social data and construction information, driving forces of territorial spatial pattern are then analyzed. Research demonstrates that the three types of territorial space aggregate distinctively. The four aspects of driving forces include natural background which sets the stage for main functions, population and economic factors which generate agglomeration effect, transportation infrastructure construction which leads to axial expansion and significant provincial strategies which encourage the established path. On this basis, targeted strategies for optimizing territory spatial pattern are then put forward. Hierarchical protection pattern should be established based on development intensity control as respect for nature. By optimizing the layout of population and industry and improving the transportation network, polycentric network-based development pattern could be established. These findings provide basis for Hubei Territorial Planning, and reference for future territorial planning in other provinces.

Keywords: Driving forces, Hubei, optimizing strategies, spatial pattern, territory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624
243 Virtual Reality for Mutual Understanding in Landscape Planning

Authors: Ball J., Capanni N., Watt S.

Abstract:

This paper argues that fostering mutual understanding in landscape planning is as much about the planners educating stakeholder groups as the stakeholders educating the planners. In other words it is an epistemological agreement as to the meaning and nature of place, especially where an effort is made to go beyond the quantitative aspects, which can be achieved by the phenomenological experience of the Virtual Reality (VR) environment. This education needs to be a bi-directional process in which distance can be both temporal as well as spatial separation of participants, that there needs to be a common framework of understanding in which neither 'side' is disadvantaged during the process of information exchange and it follows that a medium such as VR offers an effective way of overcoming some of the shortcomings of traditional media by taking advantage of continuing technological advances in Information, Technology and Communications (ITC). In this paper we make particular reference to this as an extension to Geographical Information Systems (GIS). VR as a two-way communication tool offers considerable potential particularly in the area of Public Participation GIS (PPGIS). Information rich virtual environments that can operate over broadband networks are now possible and thus allow for the representation of large amounts of qualitative and quantitative information 'side-by-side'. Therefore, with broadband access becoming standard for households and enterprises alike, distributed virtual reality environments have great potential to contribute to enabling stakeholder participation and mutual learning within the planning context.

Keywords: 3D, communication, geographical information systems, planning, public participation, virtual reality, visualisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
242 Topics of Blockchain Technology to Teach at Community College

Authors: Penn P. Wu, Jeannie Jo

Abstract:

Blockchain technology has rapidly gained popularity in industry. This paper attempts to assist academia to answer four questions. First, should community colleges begin offering education to nurture blockchain-literate students for the job market? Second, what are the appropriate topical areas to cover? Third, should it be an individual course? And forth, should it be a technical or management course? This paper starts with identifying the knowledge domains of blockchain technology and the topical areas each domain has, and continues with placing them in appropriate academic territories (Computer Sciences vs. Business) and subjects (programming, management, marketing, and laws), and then develops an evaluation model to determine the appropriate topical area for community colleges to teach. The evaluation is based on seven factors: maturity of technology, impacts on management, real-world applications, subject classification, knowledge prerequisites, textbook readiness, and recommended pedagogies. The evaluation results point to an interesting direction that offering an introductory course is an ideal option to guide students through the learning journey of what blockchain is and how it applies to business. Such an introductory course does not need to engage students in the discussions of mathematics and sciences that make blockchain technologies possible. While it is inevitable to brief technical topics to help students build a solid knowledge foundation of blockchain technologies, community colleges should avoid offering students a course centered on the discussion of developing blockchain applications.

Keywords: Blockchain, pedagogies, blockchain technologies, blockchain course, blockchain pedagogies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
241 Thai Halal Products Brand Tips

Authors: Pibool Waijittragum

Abstract:

The purpose of this research is to analyze the marketing strategies of Thai Halal products which related to the way of life for Thai Muslims. The expected benefit is the marketing strategy for brand building process for Halal products in Thailand. 4 elements of marketing strategies which necessary for the brand identity creation is the research framework: consists of Attributes, Benefits, Values and Personality. The research methodology was applied using qualitative and quantitative; 19 marketing experts with dynamic roles in Thai consumer products were interviewed. In addition, a field survey of 122 Thai Muslims selected from 175 Muslim communities in Bangkok was studied. Data analysis will be according to 5 categories of Thai Halal product: 1) Meat 2) Vegetable and Fruits 3) Instant foods and Garnishing ingredient 4) Beverages, Desserts and Snacks 5) Hygienic daily products; such as soap, shampoo and body lotion. The results will explain some suitable representation in the marketing strategies of Thai Halal products as are: 1) Benefit; the characteristics of the product with its benefit. Consumers will purchase this product with the reason of; it is beneficial nutrients product, there are no toxic or chemical residues. Fresh and clean materials 2) Attribute; the exterior images that attract to consumer. Consumers will purchase this product with the reason of; there is a standard proof mark, food and drug secure proof mark and Halal products mark. Packaging and its materials should be draw attention. Use an attractive graphic. Use outstanding images of product, material or ingredients. 3) Value; the value of products that affect to consumers perception; it is healthy products. Accumulate quality of life. It is a product of expertise, manufacturing of research result. Consumers are important. It’s sincere, honest and reliable to all. 4) Personality; reflection of consumers thought. The Personality feedback to them after they were consumes this product; they are health care persons. They are the rational person, moral person, justice person and thoughtful person like a progressive thinking.

Keywords: Marketing strategies, Product identity, Branding, Thai Halal products.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
240 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method

Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru

Abstract:

Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).

Keywords: Electrochemical remediation, pollution, soil contamination, total petroleum hydrocarbons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
239 Low Resolution Single Neural Network Based Face Recognition

Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum

Abstract:

This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.

Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
238 Screening and Evaluation of in vivo and in vitro Generated Insulin Plant (Vernonia divergens) for Antimicrobial and Anticancer Activities

Authors: Santosh Kumar, Anand Prakash, Kanak Sinha, Anita K Verma

Abstract:

Vernonia divergens Benth., commonly known as “Insulin Plant” (Fam: Asteraceae) is a potent sugar killer. Locally the leaves of the plant, boiled in water are successfully administered to a large number of diabetic patients. The present study evaluates the putative anti-diabetic ingredients, isolated from the in vivo and in vitro grown plantlets of V. divergens for their antimicrobial and anticancer activities. Sterilized explants of nodal segments were cultured on MS (Musashige and Skoog, 1962) medium in presence of different combinations of hormones. Multiple shoots along with bunch of roots were regenerated at 1mg l-1 BAP and 0.5 mg l-1 NAA. Micro-plantlets were separated and sub-cultured on the double strength (2X) of the above combination of hormones leading to increased length of roots and shoots. These plantlets were successfully transferred to soil and survived well in nature. The ethanol extract of plantlets from both in vivo & in vitro sources were prepared in soxhlet extractor and then concentrated to dryness under reduced pressure in rotary evaporator. Thus obtainedconcentrated extracts showed significant inhibitory activity against gram negative bacteria like Escherichia coli and Pseudomonas aeruginosa but no inhibition was found against gram positive bacteria. Further, these ethanol extracts were screened for in vitro percentage cytotoxicity at different time periods (24 h, 48 h and 72 h) of different dilutions. The in vivo plant extract inhibited the growth of EAC mouse cell lines in the range of 65, 66, 78, and 88% at 100, 50, 25 & 12.5μg mL-1 but at 72 h of treatment. In case of the extract of in vitro origin, the inhibition was found against EAC cell lines even at 48h. During spectrophotometric scanning, the extracts exhibited different maxima (ʎ) - four peaks in in vitro extracts as against single in in vivo preparation suggesting the possible change in the nature of ingredients during micropropagation through tissue culture techniques.

Keywords: Anti-cancer, Anti-microbial, EAC mouse cell, Tissue culture, Vernonia divergens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
237 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: Decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
236 Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime

Authors: Hyun-Koo Kim, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.

Keywords: Traffic Light Detection, Multi-class Classification, Driving Assistance System, Haar-like Feature, Color SegmentationMethod, Shape Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2780