Search results for: CHAID Decision Tree Algorithm
967 Automating the Testing of Object Behaviour: A Statechart-Driven Approach
Authors: Dong He Nam, Eric C. Mousset, David C. Levy
Abstract:
The evolution of current modeling specifications gives rise to the problem of generating automated test cases from a variety of application tools. Past endeavours on behavioural testing of UML statecharts have not systematically leveraged the potential of existing graph theory for testing of objects. Therefore there exists a need for a simple, tool-independent, and effective method for automatic test generation. An architecture, codenamed ACUTE-J (Automated stateChart Unit Testing Engine for Java), for automating the unit test generation process is presented. A sequential approach for converting UML statechart diagrams to JUnit test classes is described, with the application of existing graph theory. Research byproducts such as a universal XML Schema and API for statechart-driven testing are also proposed. The result from a Java implementation of ACUTE-J is discussed in brief. The Chinese Postman algorithm is utilised as an illustration for a run-through of the ACUTE-J architecture.
Keywords: Automated testing, model based testing, statechart testing, UML, unit testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976966 Exploring Entrepreneurship Intension Aptitude along Gender Lines among Business Decision Students in Nigeria
Authors: Paul O. Udofot, Emem B. Inyang
Abstract:
The study investigated the variability in aptitude amidst interactive effects of several social and environmental factors that could influence individual tendencies to engage in entrepreneurship in Nigeria. Consequently, the study targeted a population having similar backgrounds in type and level of higher education that are tailored toward enterprise management and development in the Niger Delta region of Nigeria. A two-stage sampling procedure was used to select 67 respondents. Primarily, the study assessed the salient pattern of entrepreneurship aptitude of respondents, and estimated and analyzed the index against their personal characteristics. Male respondents belonged to two extremes of aptitude index ranges (poor and high). Though female respondents did not exhibit a poor entrepreneurship aptitude index, the incidence percentage of the high index range of entrepreneurship aptitude among male trainees was more than the combined incidence percentage of their female counterparts. Respondents’ backgrounds outside gender presented a serious influence on entrepreneurship uptake likelihood if all situations were normal.
Keywords: Aptitude, entrepreneurship, entrepreneurial orientation, gender divide, intention, trainee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 935965 A Sequential Approach to Random-Effects Meta-Analysis
Authors: Samson Henry Dogo, Allan Clark, Elena Kulinskaya
Abstract:
The objective of meta-analysis is to combine results from several independent studies in order to create generalization and provide evidence base for decision making. But recent studies show that the magnitude of effect size estimates reported in many areas of research significantly changed over time and this can impair the results and conclusions of meta-analysis. A number of sequential methods have been proposed for monitoring the effect size estimates in meta-analysis. However they are based on statistical theory applicable only to fixed effect model (FEM) of meta-analysis. For random-effects model (REM), the analysis incorporates the heterogeneity variance, τ 2 and its estimation create complications. In this paper we study the use of a truncated CUSUM-type test with asymptotically valid critical values for sequential monitoring in REM. Simulation results show that the test does not control the Type I error well, and is not recommended. Further work required to derive an appropriate test in this important area of applications.
Keywords: Meta-analysis, random-effects model, sequential testing, temporal changes in effect sizes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427964 Exploring Pisa Monuments Using Mobile Augmented Reality
Authors: Mihai Duguleana, Florin Girbacia, Cristian Postelnicu, Raffaello Brodi, Marcello Carrozzino
Abstract:
Augmented Reality (AR) has taken a big leap with the introduction of mobile applications which co-locate bi-dimensional (e.g. photo, video, text) and tridimensional information with the location of the user enriching his/her experience. This study presents the advantages of using Mobile Augmented Reality (MAR) technologies in traveling applications, improving cultural heritage exploration. We propose a location-based AR application which combines co-location with the augmented visual information about Pisa monuments to establish a friendly navigation in this historic city. AR was used to render contextual visual information in the outdoor environment. The developed Android-based application offers two different options: it provides the ability to identify the monuments positioned close to the user’s position and it offers location information for getting near the key touristic objectives. We present the process of creating the monuments’ 3D map database and the navigation algorithm.
Keywords: Augmented reality, electronic compass, GPS, location-based service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696963 Economic Returns of Using Brewery`s Spent Grain in Animal Feed
Authors: U. Ben-Hamed, H. Seddighi, K. Thomas
Abstract:
UK breweries generate extensive by products in the form of spent grain, slurry and yeast. Much of the spent grain is produced by large breweries and processed in bulk for animal feed. Spent brewery grains contain up to 20% protein dry weight and up to 60% fiber and are useful additions to animal feed. Bulk processing is economic and allows spent grain to be sold so providing an income to the brewery. A proportion of spent grain, however, is produced by small local breweries and is more variably distributed to farms or other users using intermittent collection methods. Such use is much less economic and may incur losses if not carefully assessed for transport costs. This study reports an economic returns of using wet brewery spent grain (WBSG) in animal feed using the Co-product Optimizer Decision Evaluator model (Cattle CODE) developed by the University of Nebraska to predict performance and economic returns when byproducts are fed to finishing cattle. The results indicated that distance from brewery to farm had a significantly greater effect on the economics of use of small brewery spent grain and that alternative uses than cattle feed may be important to develop.Keywords: Animal Feed, Brewery Spent Grains, cattle CODE, Economic returns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7822962 Recurrent Radial Basis Function Network for Failure Time Series Prediction
Authors: Ryad Zemouri, Paul Ciprian Patic
Abstract:
An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822961 Effect of Medium Capacity on the Relationship between Chemical Heterogeneity and Linearly Adsorbed Solute Dispersion into Fixed Beds
Authors: K. Kaabeche-Djerafi, N. Bendjaballah-Lalaoui, S. Semra
Abstract:
The paper aims at investigating influence of medium capacity on linear adsorbed solute dispersion into chemically heterogeneous fixed beds. A discrete chemical heterogeneity distribution is considered in the one-dimensional advectivedispersive equation. The partial differential equation is solved using finite volumes method based on the Adam-Bashforth algorithm. Increased dispersion is estimated by comparing breakthrough curves second order moments and keeping identical hydrodynamic properties. As a result, dispersion increase due to chemical heterogeneity depends on the column size and surprisingly on the solid capacity. The more intense capacity is, the more important solute dispersion is. Medium length which is known to favour this effect vanishing according to the linear adsorption in fixed bed seems to create nonmonotonous variation of dispersion because of the heterogeneity. This nonmonotonous behaviour is also favoured by high capacities.Keywords: linear adsorption; chemical heterogeneity;dispersion; fixed bed; porous media
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615960 A Local Statistics Based Region Growing Segmentation Method for Ultrasound Medical Images
Authors: Ashish Thakur, Radhey Shyam Anand
Abstract:
This paper presents the region based segmentation method for ultrasound images using local statistics. In this segmentation approach the homogeneous regions depends on the image granularity features, where the interested structures with dimensions comparable to the speckle size are to be extracted. This method uses a look up table comprising of the local statistics of every pixel, which are consisting of the homogeneity and similarity bounds according to the kernel size. The shape and size of the growing regions depend on this look up table entries. The algorithms are implemented by using connected seeded region growing procedure where each pixel is taken as seed point. The region merging after the region growing also suppresses the high frequency artifacts. The updated merged regions produce the output in formed of segmented image. This algorithm produces the results that are less sensitive to the pixel location and it also allows a segmentation of the accurate homogeneous regions.
Keywords: Local statistics, region growing, segmentation, ultrasound images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3111959 Millimeter Wave I/Q Generation with the Inductive Resonator Matched Poly-Phase Filter
Authors: Ki-Jin Kim, Sanghoon Park, K. H. Ahn
Abstract:
A way of generating millimeter wave I/Q signal using inductive resonator matched poly-phase filter is suggested. Normally the poly-phase filter generates quite accurate I/Q phase and magnitude but the loss of the filter is considerable due to series connection of passive RC components. This loss term directly increases system noise figure when the poly-phase filter is used in RF Front-end. The proposed matching method eliminates above mentioned loss and in addition provides gain on the passive filter. The working algorithm is illustrated by mathematical analysis. The generated I/Q signal is used in implementing millimeter wave phase shifter for the 60 GHz communication system to verify its effectiveness. The circuit is fabricated in 90 nm TSMC RF CMOS process under 1.2 V supply voltage. The measurement results showed that the suggested method improved gain by 6.5 dB and noise by 2.3 dB. The summary of the proposed I/Q generation is compared with previous works.
Keywords: Millimeter Wave Circuits, Local Distribution, I/Q Generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014958 Development of a GPS Buoy for Ocean Surface Monitoring: Initial Results
Authors: Anuar Mohd Salleh, Mohd Effendi Daud
Abstract:
This study presents a kinematic positioning approach that uses a global positioning system (GPS) buoy for precise ocean surface monitoring. The GPS buoy data from the two experiments are processed using an accurate, medium-range differential kinematic technique. In each case, the data from a nearby coastal site are collected at a high rate (1 Hz) for more than 24 hours, and measurements are conducted in neighboring tidal stations to verify the estimated sea surface heights. The GPS buoy kinematic coordinates are estimated using epoch-wise pre-elimination and a backward substitution algorithm. Test results show that centimeterlevel accuracy can be successfully achieved in determining sea surface height using the proposed technique. The centimeter-level agreement between the two methods also suggests the possibility of using this inexpensive and more flexible GPS buoy equipment to enhance (or even replace) current tidal gauge stations.
Keywords: Global positioning system, kinematic GPS, sea surface height, GPS buoy, tide gauge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421957 Artificial Neural Network Prediction for Coke Strength after Reaction and Data Analysis
Authors: Sulata Maharana, B Biswas, Adity Ganguly, Ashok Kumar
Abstract:
In this paper, the requirement for Coke quality prediction, its role in Blast furnaces, and the model output is explained. By applying method of Artificial Neural Networking (ANN) using back propagation (BP) algorithm, prediction model has been developed to predict CSR. Important blast furnace functions such as permeability, heat exchanging, melting, and reducing capacity are mostly connected to coke quality. Coke quality is further dependent upon coal characterization and coke making process parameters. The ANN model developed is a useful tool for process experts to adjust the control parameters in case of coke quality deviations. The model also makes it possible to predict CSR for new coal blends which are yet to be used in Coke Plant. Input data to the model was structured into 3 modules, for tenure of past 2 years and the incremental models thus developed assists in identifying the group causing the deviation of CSR.Keywords: Artificial Neural Networks, backpropagation, CokeStrength after Reaction, Multilayer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2619956 A Subjective Scheduler Based on Backpropagation Neural Network for Formulating a Real-life Scheduling Situation
Authors: K. G. Anilkumar, T. Tanprasert
Abstract:
This paper presents a subjective job scheduler based on a 3-layer Backpropagation Neural Network (BPNN) and a greedy alignment procedure in order formulates a real-life situation. The BPNN estimates critical values of jobs based on the given subjective criteria. The scheduler is formulated in such a way that, at each time period, the most critical job is selected from the job queue and is transferred into a single machine before the next periodic job arrives. If the selected job is one of the oldest jobs in the queue and its deadline is less than that of the arrival time of the current job, then there is an update of the deadline of the job is assigned in order to prevent the critical job from its elimination. The proposed satisfiability criteria indicates that the satisfaction of the scheduler with respect to performance of the BPNN, validity of the jobs and the feasibility of the scheduler.Keywords: Backpropagation algorithm, Critical value, Greedy alignment procedure, Neural network, Subjective criteria, Satisfiability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489955 Management of Local Towns (Tambon) According to Philosophy of Sufficiency Economy
Authors: Wichian Sriprachan, Chutikarn Sriviboon
Abstract:
The objectives of this research were to study the management of local towns and to develop a better model of town management according to the Philosophy of Sufficiency Economy. This study utilized qualitative research, field research, as well as documentary research at the same time. A total of 10 local towns or Tambons of Supanburi province, Thailand were selected for an in-depth interview. The findings revealed that the model of local town management according to Philosophy of Sufficient Economy was in a level of “good” and the model of management has the five basic guidelines: 1) ability to manage budget information and keep it up-to-date, 2) ability to decision making according to democracy rules, 3) ability to use check and balance system, 4) ability to control, follow, and evaluation, and 5) ability to allow the general public to participate. In addition, the findings also revealed that the human resource management according to Philosophy of Sufficient Economy includes obeying laws, using proper knowledge, and having integrity in five areas: plan, recruit, select, train, and maintain human resources.
Keywords: Management, Local Town (Tambon), Principles of Sufficiency Economy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524954 Agent-based Framework for Energy Efficiency in Wireless Sensor Networks
Authors: Hongjoong Sin, Jangsoo Lee, Sungju Lee, Seunghwan Yoo, Sanghyuck Lee, Jaesik Lee, Yongjun Lee, Sungchun Kim
Abstract:
Wireless sensor networks are consisted of hundreds or thousands of small sensors that have limited resources. Energy-efficient techniques are the main issue of wireless sensor networks. This paper proposes an energy efficient agent-based framework in wireless sensor networks. We adopt biologically inspired approaches for wireless sensor networks. Agent operates automatically with their behavior policies as a gene. Agent aggregates other agents to reduce communication and gives high priority to nodes that have enough energy to communicate. Agent behavior policies are optimized by genetic operation at the base station. Simulation results show that our proposed framework increases the lifetime of each node. Each agent selects a next-hop node with neighbor information and behavior policies. Our proposed framework provides self-healing, self-configuration, self-optimization properties to sensor nodes.Keywords: Agent, Energy Efficiency, Genetic algorithm, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666953 An Integrated Logistics Model of Spare Parts Maintenance Planning within the Aviation Industry
Authors: Roy Fritzsche, Rainer Lasch
Abstract:
Avoidable unscheduled maintenance events and unnecessary spare parts deliveries are mostly caused by an incorrect choice of the underlying maintenance strategy. For a faster and more efficient supply of spare parts for aircrafts of an airline we examine options for improving the underlying logistics network integrated in an existing aviation industry network. This paper presents a dynamic prediction model as decision support for maintenance method selection considering requirements of an entire flight network. The objective is to guarantee a high supply of spare parts by an optimal interaction of various network levels and thus to reduce unscheduled maintenance events and minimize total costs. By using a prognostics-based preventive maintenance strategy unscheduled component failures are avoided for an increase in availability and reliability of the entire system. The model is intended for use in an aviation company that utilizes a structured planning process based on collected failures data of components.Keywords: Aviation industry, Prognosis, Reliability, Preventive maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4541952 Coverage and Connectivity Problem in Sensor Networks
Authors: Meenakshi Bansal, Iqbal Singh, Parvinder S. Sandhu
Abstract:
In over deployed sensor networks, one approach to Conserve energy is to keep only a small subset of sensors active at Any instant. For the coverage problems, the monitoring area in a set of points that require sensing, called demand points, and consider that the node coverage area is a circle of range R, where R is the sensing range, If the Distance between a demand point and a sensor node is less than R, the node is able to cover this point. We consider a wireless sensor network consisting of a set of sensors deployed randomly. A point in the monitored area is covered if it is within the sensing range of a sensor. In some applications, when the network is sufficiently dense, area coverage can be approximated by guaranteeing point coverage. In this case, all the points of wireless devices could be used to represent the whole area, and the working sensors are supposed to cover all the sensors. We also introduce Hybrid Algorithm and challenges related to coverage in sensor networks.Keywords: Wireless sensor networks, network coverage, Energy conservation, Hybrid Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726951 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging
Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig
Abstract:
A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.
Keywords: Clogging, nozzle, numerical model, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843950 Research on Urban Point of Interest Generalization Method Based on Mapping Presentation
Authors: Chengming Li, Yong Yin, Peipei Guo, Xiaoli Liu
Abstract:
Without taking account of the attribute richness of POI (point of interest) data and spatial distribution limited by roads, a POI generalization method considering both attribute information and spatial distribution has been proposed against the existing point generalization algorithm merely focusing on overall information of point groups. Hierarchical characteristic of urban POI information expression has been firstly analyzed to point out the measurement feature of the corresponding hierarchy. On this basis, an urban POI generalizing strategy has been put forward: POIs urban road network have been divided into three distribution pattern; corresponding generalization methods have been proposed according to the characteristic of POI data in different distribution patterns. Experimental results showed that the method taking into account both attribute information and spatial distribution characteristics of POI can better implement urban POI generalization in the mapping presentation.
Keywords: POI, Road network, spatial information expression, selection method, distribution pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041949 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.
Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2935948 Feature Preserving Image Interpolation and Enhancement Using Adaptive Bidirectional Flow
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang
Abstract:
Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually to some extent the effects of blurred edges and jagged artifacts in the image. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to enhance edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (''jaggies'') along the tangent directions. In order to preserve image features such as edges, angles and textures, the nonlinear diffusion coefficients are locally adjusted according to the first and second order directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.
Keywords: anisotropic diffusion, bidirectional flow, directionalderivatives, edge enhancement, image interpolation, inverse flow, shock filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501947 Global GMRES with Deflated Restarting for Families of Shifted Linear Systems
Authors: Jing Meng, Peiyong Zhu, Houbiao Li
Abstract:
Many problems in science and engineering field require the solution of shifted linear systems with multiple right hand sides and multiple shifts. To solve such systems efficiently, the implicitly restarted global GMRES algorithm is extended in this paper. However, the shift invariant property could no longer hold over the augmented global Krylov subspace due to adding the harmonic Ritz matrices. To remedy this situation, we enforce the collinearity condition on the shifted system and propose shift implicitly restarted global GMRES. The new method not only improves the convergence but also has a potential to simultaneously compute approximate solution for the shifted systems using only as many matrix vector multiplications as the solution of the seed system requires. In addition, some numerical experiments also confirm the effectiveness of our method.
Keywords: Shifted linear systems, global Krylov subspace, GLGMRESIR, GLGMRESIRsh, harmonic Ritz matrix, harmonic Ritz vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978946 An Artificial Intelligent Technique for Robust Digital Watermarking in Multiwavelet Domain
Authors: P. Kumsawat, K. Pasitwilitham, K. Attakitmongcol, A. Srikaew
Abstract:
In this paper, an artificial intelligent technique for robust digital image watermarking in multiwavelet domain is proposed. The embedding technique is based on the quantization index modulation technique and the watermark extraction process does not require the original image. We have developed an optimization technique using the genetic algorithms to search for optimal quantization steps to improve the quality of watermarked image and robustness of the watermark. In addition, we construct a prediction model based on image moments and back propagation neural network to correct an attacked image geometrically before the watermark extraction process begins. The experimental results show that the proposed watermarking algorithm yields watermarked image with good imperceptibility and very robust watermark against various image processing attacks.Keywords: Watermarking, Multiwavelet, Quantization index modulation, Genetic algorithms, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095945 Proposing Enterprise Wide Information Systems Business Performance Model
Authors: Vineet Kansal
Abstract:
Enterprise Wide Information Systems (EWIS) implementation involves the entire business and will require changes throughout the firm. Because of the scope, complexity and continuous nature of ERP, the project-based approach to managing the implementation process resulted in failure rates of between 60% and 80%. In recent years ERP systems have received much attention. The organizational relevance and risk of ERP projects make it important for organizations to focus on ways to make ERP implementation successful. Once these systems are in place, however, their performance depends on the identified macro variables viz. 'Business Process', 'Decision Making' and 'Individual / Group working'. The questionnaire was designed and administered. The responses from 92 organizations were compiled. The relationship of these variables with EWIS performance is analyzed using inferential statistical measurements. The study helps to understand the performance of model presented. The study suggested in keeping away from the calamities and thereby giving the necessary competitive edge. Whenever some discrepancy is identified during the process of performance appraisal care has to be taken to draft necessary preventive measures. If all these measures are taken care off then the EWIS performance will definitely deliver the results.Keywords: Enterprise Systems, performance, technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308944 Data-Reusing Adaptive Filtering Algorithms with Adaptive Error Constraint
Authors: Young-Seok Choi
Abstract:
We present a family of data-reusing and affine projection algorithms. For identification of a noisy linear finite impulse response channel, a partial knowledge of a channel, especially noise, can be used to improve the performance of the adaptive filter. Motivated by this fact, the proposed scheme incorporates an estimate of a knowledge of noise. A constraint, called the adaptive noise constraint, estimates an unknown information of noise. By imposing this constraint on a cost function of data-reusing and affine projection algorithms, a cost function based on the adaptive noise constraint and Lagrange multiplier is defined. Minimizing the new cost function leads to the adaptive noise constrained (ANC) data-reusing and affine projection algorithms. Experimental results comparing the proposed schemes to standard data-reusing and affine projection algorithms clearly indicate their superior performance.Keywords: Data-reusing, affine projection algorithm, error constraint, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621943 Volterra Filter for Color Image Segmentation
Authors: M. B. Meenavathi, K. Rajesh
Abstract:
Color image segmentation plays an important role in computer vision and image processing areas. In this paper, the features of Volterra filter are utilized for color image segmentation. The discrete Volterra filter exhibits both linear and nonlinear characteristics. The linear part smoothes the image features in uniform gray zones and is used for getting a gross representation of objects of interest. The nonlinear term compensates for the blurring due to the linear term and preserves the edges which are mainly used to distinguish the various objects. The truncated quadratic Volterra filters are mainly used for edge preserving along with Gaussian noise cancellation. In our approach, the segmentation is based on K-means clustering algorithm in HSI space. Both the hue and the intensity components are fully utilized. For hue clustering, the special cyclic property of the hue component is taken into consideration. The experimental results show that the proposed technique segments the color image while preserving significant features and removing noise effects.Keywords: Color image segmentation, HSI space, K–means clustering, Volterra filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862942 Machine Scoring Model Using Data Mining Techniques
Authors: Wimalin S. Laosiritaworn, Pongsak Holimchayachotikul
Abstract:
this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.Keywords: Computer Numerical Control, Data Mining, HardDisk Drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398941 Solid Waste Management in Adama, Ethiopia: Aspects and Challenges
Authors: Mengist Hailemariam, Assegid Ajeme
Abstract:
The ever increasing amount of solid waste (SW) generated which is exacerbated by lack of proper waste management system is of growing concern worldwide and in major cities in developing countries due to its social, economic and environmental implications. This study attempts to describe the aspects of solid waste management (SWM) in Adama, one of the fast urbanizing cities in Ethiopia, and highlights the challenges thereof. Data were gathered through interview supplemented by field observation and self-administered questionnaire. Then, the data were analyzed using the Statistical Package for Social Science (SPSS) software. In addition, secondary data were gathered from documents. Findings revealed that the current SWM practice couldn’t cope with the fast urbanizing needs and the rapid population growth exhibited by the city. Besides, major factors contributing to the inefficient system were identified. The study would provide practical insights to decision makers in developing a sustainable SWM system leading to minimized risk in the city.
Keywords: Adama, Aspects and challenges, Ethiopia, Solid waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7611940 Neighbour Cell List Reduction in Multi-Tier Heterogeneous Networks
Authors: Mohanad Alhabo, Naveed Nawaz
Abstract:
The ongoing call or data session must be maintained to ensure a good quality of service. This can be accomplished by performing handover procedure while the user is on the move. However, dense deployment of small cells in 5G networks is a challenging issue due to the extensive number of handovers. In this paper, a neighbour cell list method is proposed to reduce the number of target small cells and hence minimizing the number of handovers. The neighbour cell list is built by omitting cells that could cause an unnecessary handover and/or handover failure because of short time of stay of a user in these cells. A multi-attribute decision making technique, simple additive weighting, is then applied to the optimized neighbour cell list. The performance of the proposed method is analysed and compared with that of the existing methods. Results disclose that our method decreases the candidate small cell list, unnecessary handovers, handover failure and short time of stay cells compared to the competitive method.
Keywords: Handover, HetNets, MADM, small cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543939 A Background Subtraction Based Moving Object Detection around the Host Vehicle
Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung
Abstract:
In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added. We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.Keywords: Gaussian mixture model, background subtraction, Moving object detection, color space, morphological filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559938 Soliton Interaction in Birefringent Fibers with Third-Order Dispersion
Authors: Dowluru Ravi Kumar, Bhima Prabhakara Rao
Abstract:
Propagation of solitons in single-mode birefringent fibers is considered under the presence of third-order dispersion (TOD). The behavior of two neighboring solitons and their interaction is investigated under the presence of third-order dispersion with different group velocity dispersion (GVD) parameters. It is found that third-order dispersion makes the resultant soliton to deviate from its ideal position and increases the interaction between adjacent soliton pulses. It is also observed that this deviation due to third-order dispersion is considerably small when the optical pulse propagates at wavelengths relatively far from the zerodispersion. Modified coupled nonlinear Schrödinger-s equations (CNLSE) representing the propagation of optical pulse in single mode fiber with TOD are solved using split-step Fourier algorithm. The results presented in this paper reveal that the third-order dispersion can substantially increase the interaction between the solitons, but large group velocity dispersion reduces the interaction between neighboring solitons.
Keywords: Birefringence, Group velocity dispersion, Polarization mode dispersion, Soliton interaction, Third order dispersion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226