Search results for: velocity gradient.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1099

Search results for: velocity gradient.

739 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: Balance control, speed control, intelligent controller and two wheel inverted pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
738 CFD Simulation of Condensing Vapor Bubble using VOF Model

Authors: Seong-Su Jeon, Seong-Jin Kim, Goon-Cherl Park

Abstract:

In this study, direct numerical simulation for the bubble condensation in the subcooled boiling flow was performed. The main goal was to develop the CFD modeling for the bubble condensation and to evaluate the accuracy of the VOF model with the developed CFD modeling. CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using UDF. In the modeling, the amount of condensation was determined using the interfacial heat transfer coefficient obtained from the bubble velocity, liquid temperature and bubble diameter every time step. To evaluate the VOF model using the CFD modeling for the bubble condensation, CFD simulation results were compared with SNU experimental results such as bubble volume and shape, interfacial area, bubble diameter and bubble velocity. Simulation results predicted well the behavior of the actual condensing bubble. Therefore, it can be concluded that the VOF model using the CFD modeling for the bubble condensation will be a useful computational fluid dynamics tool for analyzing the behavior of the condensing bubble in a wide range of the subcooled boiling flow.

Keywords: Bubble condensation, CFD modeling, Subcooled boiling flow, VOF model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6747
737 Effect of Swirl on Gas-Fired Combustion Behavior in a 3-D Rectangular Combustion Chamber

Authors: Man Young Kim

Abstract:

The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on the effect of inlet swirl flow through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal and flow characteristics in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate and temperature were shifted to forward direction compared with the case of no swirl.

Keywords: Gaseous Fuel, Inlet Swirl, Thermal Radiation, Turbulent Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
736 A State Aggregation Approach to Singularly Perturbed Markov Reward Processes

Authors: Dali Zhang, Baoqun Yin, Hongsheng Xi

Abstract:

In this paper, we propose a single sample path based algorithm with state aggregation to optimize the average rewards of singularly perturbed Markov reward processes (SPMRPs) with a large scale state spaces. It is assumed that such a reward process depend on a set of parameters. Differing from the other kinds of Markov chain, SPMRPs have their own hierarchical structure. Based on this special structure, our algorithm can alleviate the load in the optimization for performance. Moreover, our method can be applied on line because of its evolution with the sample path simulated. Compared with the original algorithm applied on these problems of general MRPs, a new gradient formula for average reward performance metric in SPMRPs is brought in, which will be proved in Appendix, and then based on these gradients, the schedule of the iteration algorithm is presented, which is based on a single sample path, and eventually a special case in which parameters only dominate the disturbance matrices will be analyzed, and a precise comparison with be displayed between our algorithm with the old ones which is aim to solve these problems in general Markov reward processes. When applied in SPMRPs, our method will approach a fast pace in these cases. Furthermore, to illustrate the practical value of SPMRPs, a simple example in multiple programming in computer systems will be listed and simulated. Corresponding to some practical model, physical meanings of SPMRPs in networks of queues will be clarified.

Keywords: Singularly perturbed Markov processes, Gradient of average reward, Differential reward, State aggregation, Perturbed close network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
735 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures

Authors: S. Hachemi, A. Ounis, S. Chabi

Abstract:

This paper presents the results of an experimental  study on the effects of elevated temperature on compressive and  flexural strength of Normal Strength Concrete (NSC), High Strength  Concrete (HSC) and High Performance Concrete (HPC). In addition,  the specimen mass and volume were measured before and after  heating in order to determine the loss of mass and volume during the  test. In terms of non-destructive measurement, ultrasonic pulse  velocity test was proposed as a promising initial inspection method  for fire damaged concrete structure. 100 Cube specimens for three  grades of concrete were prepared and heated at a rate of 3°C/min up  to different temperatures (150, 250, 400, 600, and 900°C). The results  show a loss of compressive and flexural strength for all the concretes  heated to temperature exceeding 400°C. The results also revealed that  mass and density of the specimen significantly reduced with an  increase in temperature.

 

Keywords: High temperature, Compressive strength, Mass loss, Ultrasonic pulse velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
734 Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure

Authors: Ali Reza Tahavvor, Saeed Hosseini, Afshin Karimzadeh Fard

Abstract:

In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one.

Keywords: Cavity, natural convection, Nusselt number, wavy wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
733 Estimation of Seismic Ground Motion and Shaking Parameters Based On Microtremor Measurements at Palu City, Central Sulawesi Province, Indonesia

Authors: P. S. Thein, S. Pramumijoyo, K. S. Brotopuspito, J. Kiyono, W. Wilopo, A. Furukawa, A. Setianto

Abstract:

In this study, we estimated the seismic ground motion parameters based on microtremor measurements atPalu City. Several earthquakes have struck along the Palu-Koro Fault during recent years. The USGS epicenter, magnitude Mw 6.3 event that occurred on January 23, 2005 caused several casualties. We conducted a microtremor survey to estimate the strong ground motion distribution during the earthquake. From this surveywe produced a map of the peak ground acceleration, velocity, seismic vulnerability index and ground shear strain maps in Palu City. We performed single observations of microtremor at 151 sites in Palu City. We also conducted8-site microtremors array investigation to gain a representative determination of the soil condition of subsurface structures in Palu City.From the array observations, Palu City corresponds to relatively soil condition with Vs ≤ 300m/s, the predominant periods due to horizontal vertical ratios (HVSRs) are in the range of 0.4 to 1.8 s and the frequency are in the range of 0.7 to 3.3 Hz. Strong ground motions of the Palu area were predicted based on the empirical stochastic green’s function method. Peak ground acceleration and velocity becomes more than 400 gal and 30 kine in some areas, which causes severe damage for buildings in high probability. Microtremor survey results showed that in hilly areas had low seismic vulnerability index and ground shear strain, whereas in coastal alluvium was composed of material having a high seismic vulnerability and ground shear strain indication.

Keywords: Palu-Koro Fault, Microtremor, Peak Ground Acceleration, Peak Ground Velocity and Seismic Vulnerability Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3319
732 Performance Analysis of Reconstruction Algorithms in Diffuse Optical Tomography

Authors: K. Uma Maheswari, S. Sathiyamoorthy, G. Lakshmi

Abstract:

Diffuse Optical Tomography (DOT) is a non-invasive imaging modality used in clinical diagnosis for earlier detection of carcinoma cells in brain tissue. It is a form of optical tomography which produces gives the reconstructed image of a human soft tissue with by using near-infra-red light. It comprises of two steps called forward model and inverse model. The forward model provides the light propagation in a biological medium. The inverse model uses the scattered light to collect the optical parameters of human tissue. DOT suffers from severe ill-posedness due to its incomplete measurement data. So the accurate analysis of this modality is very complicated. To overcome this problem, optical properties of the soft tissue such as absorption coefficient, scattering coefficient, optical flux are processed by the standard regularization technique called Levenberg - Marquardt regularization. The reconstruction algorithms such as Split Bregman and Gradient projection for sparse reconstruction (GPSR) methods are used to reconstruct the image of a human soft tissue for tumour detection. Among these algorithms, Split Bregman method provides better performance than GPSR algorithm. The parameters such as signal to noise ratio (SNR), contrast to noise ratio (CNR), relative error (RE) and CPU time for reconstructing images are analyzed to get a better performance.

Keywords: Diffuse optical tomography, ill-posedness, Levenberg Marquardt method, Split Bregman, the Gradient projection for sparse reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
731 Experimental Investigation on Solid Concentration in Gas-Solid Circulating Fluidized Bed for Methanol-to-Olefins Process

Authors: Biao Wang, Tao Li, Qi-Wen Sun, Wei-Yong Ying, Ding-Ye Fang

Abstract:

Methanol-to-olefins coupled with transformation of coal or natural gas to methanol gives an interesting and promising way to produce ethylene and propylene. To investigate solid concentration in gas-solid fluidized bed for methanol-to-olefins process catalyzed by SAPO-34, a cold model experiment system is established in this paper. The system comprises a gas distributor in a 300mm internal diameter and 5000mm height acrylic column, the fiber optic probe system and series of cyclones. The experiments are carried out at ambient conditions and under different superficial gas velocity ranging from 0.3930m/s to 0.7860m/s and different initial bed height ranging from 600mm to 1200mm. The effects of radial distance, axial distance, superficial gas velocity, initial bed height on solid concentration in the bed are discussed. The effects of distributor shape and porosity on solid concentration are also discussed. The time-averaged solid concentration profiles under different conditions are obtained.

Keywords: Branched pipe distributor, distributor porosity, gas-solid fluidized bed, solid concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
730 Automatic Lip Contour Tracking and Visual Character Recognition for Computerized Lip Reading

Authors: Harshit Mehrotra, Gaurav Agrawal, M.C. Srivastava

Abstract:

Computerized lip reading has been one of the most actively researched areas of computer vision in recent past because of its crime fighting potential and invariance to acoustic environment. However, several factors like fast speech, bad pronunciation, poor illumination, movement of face, moustaches and beards make lip reading difficult. In present work, we propose a solution for automatic lip contour tracking and recognizing letters of English language spoken by speakers using the information available from lip movements. Level set method is used for tracking lip contour using a contour velocity model and a feature vector of lip movements is then obtained. Character recognition is performed using modified k nearest neighbor algorithm which assigns more weight to nearer neighbors. The proposed system has been found to have accuracy of 73.3% for character recognition with speaker lip movements as the only input and without using any speech recognition system in parallel. The approach used in this work is found to significantly solve the purpose of lip reading when size of database is small.

Keywords: Contour Velocity Model, Lip Contour Tracking, LipReading, Visual Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
729 Effect of Particle Gravity on the Fractal Dimension of Particle Line in three-dimensional Turbulent Flows using Kinematic Simulation

Authors: A. Abou El-Azm Aly, F. Nicolleau, T. M. Michelitsch, A. F. Nowakowski

Abstract:

In this study, the dispersion of heavy particles line in an isotropic and incompressible three-dimensional turbulent flow has been studied using the Kinematic Simulation techniques to find out the evolution of the line fractal dimension. The fractal dimension of the line is found in the case of different particle gravity (in practice, different values of particle drift velocity) in the presence of small particle inertia with a comparison with that obtained in the diffusion case of material line at the same Reynolds number. It can be concluded for the dispersion of heavy particles line in turbulent flow that the particle gravity affect the fractal dimension of the line for different particle gravity velocities in the range 0.2 < W < 2. With the increase of the particle drift velocity, the fractal dimension of the line decreases which may be explained as the particles pass many scales in their journey in the direction of the gravity and the particles trajectories do not affect by these scales at high particle drift velocities.

Keywords: Heavy particles, two-phase flow, Kinematic Simulation, Fractal dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
728 Numerical Study of Liquefied Petroleum Gas Laminar Flow in Cylindrical Elliptic Pipes

Authors: Olumuyiwa A. Lasode, Tajudeen O. Popoola, B. V. S. S. S. Prasad

Abstract:

Fluid flow in cylinders of elliptic cross-section was investigated. Fluid used is Liquefied petroleum gas (LPG). LPG found in Nigeria contains majorly butane with percentages of propane. Commercial available code FLUENT which uses finite volume method was used to solve fluid flow governing equations. There has been little attention paid to fluid flow in cylindrical elliptic pipes. The present work aims to predict the LPG gas flow in cylindrical pipes of elliptic cross-section. Results of flow parameters of velocity and pressure distributions are presented. Results show that the pressure drop in elliptic pipes is higher than circular pipe of the same cross-sectional area. This is an important result as the pressure drop is related to the pump power needed to drive the flow. Results show that the velocity increases towards centre of the pipe as the flow moves downstream, and also increases towards the outlet of the pipe.

Keywords: Elliptic Pipes, Liquefied Petroleum Gas, Numerical Study, Pressure Drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2910
727 The Modification of the Mixed Flow Pump with Respect to Stability of the Head Curve

Authors: Roman Klas, František Pochylý, Pavel Rudolf

Abstract:

This paper is focused on the CFD simulation of the radiaxial pump (i.e. mixed flow pump) with the aim to detect the reasons of Y-Q characteristic instability. The main reasons of pressure pulsations were detected by means of the analysis of velocity and pressure fields within the pump combined with the theoretical approach. Consequently, the modifications of spiral case and pump suction area were made based on the knowledge of flow conditions and the shape of dissipation function. The primary design of pump geometry was created as the base model serving for the comparison of individual modification influences. The basic experimental data are available for this geometry. This approach replaced the more complicated and with respect to convergence of all computational tasks more difficult calculation for the compressible liquid flow. The modification of primary pump consisted in inserting the three fins types. Subsequently, the evaluation of pressure pulsations, specific energy curves and visualization of velocity fields were chosen as the criterion for successful design. 

Keywords: CFD, radiaxial pump, spiral case, stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
726 Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel

Authors: Huei Chu Weng

Abstract:

This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.

Keywords: Microfluidics, forced convection, thermal creep, second-order boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
725 Interaction of Electroosmotic Flow on Isotachophoretic Transport of Ions

Authors: S. Bhattacharyya, Partha P. Gopmandal

Abstract:

A numerical study on the influence of electroosmotic flow on analyte preconcentration by isotachophoresis ( ITP) is made. We consider that the double layer induced electroosmotic flow ( EOF) counterbalance the electrophoretic velocity and a stationary ITP stacked zones results. We solve the Navier-Stokes equations coupled with the Nernst-Planck equations to determine the local convective velocity and the preconcentration dynamics of ions. Our numerical algorithm is based on a finite volume method along with a secondorder upwind scheme. The present numerical algorithm can capture the the sharp boundaries of step-changes ( plateau mode) or zones of steep gradients ( peak mode) accurately. The convection of ions due to EOF reduces the resolution of the ITP transition zones and produces a dispersion in analyte zones. The role of the electrokinetic parameters which induces dispersion is analyzed. A one-dimensional model for the area-averaged concentrations based on the Taylor-Aristype effective diffusivity is found to be in good agreement with the computed solutions.

Keywords: Interfaces, Electroosmotic flow, QUICK Scheme, Dispersion, Effective Diffusivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
724 Dual Mode Navigation for Two-Wheeled Robot

Authors: N.M Abdul Ghani, L.K. Haur, T.P.Yon, F Naim

Abstract:

This project relates to a two-wheeled self balancing robot for transferring loads on different locations along a path. This robot specifically functions as a dual mode navigation to navigate efficiently along a desired path. First, as a plurality of distance sensors mounted at both sides of the body for collecting information on tilt angle of the body and second, as a plurality of speed sensors mounted at the bottom of the body for collecting information of the velocity of the body in relative to the ground. A microcontroller for processing information collected from the sensors and configured to set the path and to balance the body automatically while a processor operatively coupled to the microcontroller and configured to compute change of the tilt and velocity of the body. A direct current motor operatively coupled to the microcontroller for controlling the wheels and characterized in that a remote control is operatively coupled to the microcontroller to operate the robot in dual navigation modes.

Keywords: Two-Wheeled Balancing Robot, Dual Mode Navigation, Remote Control, Desired Path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
723 Critical Cylindrical Effect and Space-Time Exchange in Rotational Reference Frames of Special Relativity

Authors: Rui Yin, Ming Yin, Yang Wang

Abstract:

For a rotational reference frame of the theory of special relativity, the critical radius is defined as the distance from the axis to the point where the tangential velocity is equal to the speed of light, and the critical cylinder as the set of all points separated from the axis by this critical radius. Based on these terms, two relativistic effects of rotation are discovered: (i) the tangential velocity in the region of Outside Critical Cylinder (OCC) is not superluminal, due to the existence of space-time exchange; (ii) some of the physical quantities of the rotational body have an opposite mathematic sign at OCC versus those at Inside Critical Cylinder (ICC), which is termed as the Critical Cylindrical Effect (CCE). The laboratory experiments demonstrate that the repulsive force exerted on an anion by electrons will change to an attractive force by the electrons in precession while the anion is at OCC of the precession. 36 screenshots from four experimental videos are provided. Theoretical proofs for both space-time exchange and CCE are then presented. The CCEs of field force are also discussed.

Keywords: Critical radius, critical cylindrical effect, special relativity, space-time exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57
722 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition

Authors: Hamed Djalal

Abstract:

The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.

Keywords: Forced convection, friction factor pressure drop thermal hydraulic analysis, vertical heated rectangular channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
721 Mixed Convection Boundary Layer Flows Induced by a Permeable Continuous Surface Stretched with Prescribed Skin Friction

Authors: Mohamed Ali

Abstract:

The boundary layer flow and heat transfer on a stretched surface moving with prescribed skin friction is studied for permeable surface. The surface temperature is assumed to vary inversely with the vertical direction x for n = -1. The skin friction at the surface scales as (x-1/2) at m = 0. The constants m and n are the indices of the power law velocity and temperature exponent respectively. Similarity solutions are obtained for the boundary layer equations subject to power law temperature and velocity variation. The effect of various governing parameters, such as the buoyancy parameter λ and the suction/injection parameter fw for air (Pr = 0.72) are studied. The choice of n and m ensures that the used similarity solutions are x independent. The results show that, assisting flow (λ > 0) enhancing the heat transfer coefficient along the surface for any constant value of fw. Furthermore, injection increases the heat transfer coefficient but suction reduces it at constant λ.

Keywords: Stretching surface, Boundary layers, Prescribed skin friction, Suction or injection, similarity solutions, buoyancy effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
720 The Optimization of an Intelligent Traffic Congestion Level Classification from Motorists- Judgments on Vehicle's Moving Patterns

Authors: Thammasak Thianniwet, Satidchoke Phosaard, Wasan Pattara-Atikom

Abstract:

We proposed a technique to identify road traffic congestion levels from velocity of mobile sensors with high accuracy and consistent with motorists- judgments. The data collection utilized a GPS device, a webcam, and an opinion survey. Human perceptions were used to rate the traffic congestion levels into three levels: light, heavy, and jam. Then the ratings and velocity were fed into a decision tree learning model (J48). We successfully extracted vehicle movement patterns to feed into the learning model using a sliding windows technique. The parameters capturing the vehicle moving patterns and the windows size were heuristically optimized. The model achieved accuracy as high as 99.68%. By implementing the model on the existing traffic report systems, the reports will cover comprehensive areas. The proposed method can be applied to any parts of the world.

Keywords: intelligent transportation system (ITS), traffic congestion level, human judgment, decision tree (J48), geographic positioning system (GPS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
719 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
718 Tidal Current Behaviors and Remarkable Bathymetric Change in the South-Western Part of Khor Abdullah, Kuwait

Authors: Ahmed M. Al-Hasem

Abstract:

A study of the tidal current behavior and bathymetric changes was undertaken in order to establish an information base for future coastal management. The average velocity for tidal current was 0.46 m/s and the maximum velocity was 1.08 m/s during ebb tide. During spring tides, maximum velocities range from 0.90 m/s to 1.08 m/s, whereas maximum velocities vary from 0.40 m/s to 0.60 m/s during neap tides. Despite greater current velocities during flood tide, the bathymetric features enhance the dominance of the ebb tide. This can be related to the abundance of fine sediments from the ebb current approaching the study area, and the relatively coarser sediment from the approaching flood current. Significant bathymetric changes for the period from 1985 to 1998 were found with dominance of erosion process. Approximately 96.5% of depth changes occurred within the depth change classes of -5 m to 5 m. The high erosion processes within the study area will subsequently result in high accretion processes, particularly in the north, the location of the proposed Boubyan Port and its navigation channel.

Keywords: Bathymetric change, Boubyan Island, GIS, Khor Abdullah, tidal current behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
717 Mixed Convection in a 2D-channel with a Co- Flowing Fluid Injection: Influence of the Jet Position

Authors: Ameni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot

Abstract:

Numerical study of a plane jet occurring in a vertical heated channel is carried out. The aim is to explore the influence of the forced flow, issued from a flat nozzle located in the entry section of a channel, on the up-going fluid along the channel walls. The Reynolds number based on the nozzle width and the jet velocity ranges between 3 103 and 2.104; whereas, the Grashof number based on the channel length and the wall temperature difference is 2.57 1010. Computations are established for a symmetrically heated channel and various nozzle positions. The system of governing equations is solved with a finite volumes method. The obtained results show that the jet-wall interactions activate the heat transfer, the position variation modifies the heat transfer especially for low Reynolds numbers: the heat transfer is enhanced for the adjacent wall; however it is decreased for the opposite one. The numerical velocity and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and the Nusselt number along the plates.

Keywords: Channel, Heat flux, Jet, Mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
716 Scatterer Density in Edge and Coherence Enhancing Nonlinear Anisotropic Diffusion for Medical Ultrasound Speckle Reduction

Authors: Ahmed Badawi, J. Michael Johnson, Mohamed Mahfouz

Abstract:

This paper proposes new enhancement models to the methods of nonlinear anisotropic diffusion to greatly reduce speckle and preserve image features in medical ultrasound images. By incorporating local physical characteristics of the image, in this case scatterer density, in addition to the gradient, into existing tensorbased image diffusion methods, we were able to greatly improve the performance of the existing filtering methods, namely edge enhancing (EE) and coherence enhancing (CE) diffusion. The new enhancement methods were tested using various ultrasound images, including phantom and some clinical images, to determine the amount of speckle reduction, edge, and coherence enhancements. Scatterer density weighted nonlinear anisotropic diffusion (SDWNAD) for ultrasound images consistently outperformed its traditional tensor-based counterparts that use gradient only to weight the diffusivity function. SDWNAD is shown to greatly reduce speckle noise while preserving image features as edges, orientation coherence, and scatterer density. SDWNAD superior performances over nonlinear coherent diffusion (NCD), speckle reducing anisotropic diffusion (SRAD), adaptive weighted median filter (AWMF), wavelet shrinkage (WS), and wavelet shrinkage with contrast enhancement (WSCE), make these methods ideal preprocessing steps for automatic segmentation in ultrasound imaging.

Keywords: Nonlinear anisotropic diffusion, ultrasound imaging, speckle reduction, scatterer density estimation, edge based enhancement, coherence enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
715 The Characteristics of the Factors that Govern the Preferred Force in the Social Force Model of Pedestrian Movement

Authors: Zarita Zainuddin, Mohammed Mahmod Shuaib, Ibtesam M. Abu-Sulyman

Abstract:

The social force model which belongs to the microscopic pedestrian studies has been considered as the supremacy by many researchers and due to the main feature of reproducing the self-organized phenomena resulted from pedestrian dynamic. The Preferred Force which is a measurement of pedestrian-s motivation to adapt his actual velocity to his desired velocity is an essential term on which the model was set up. This Force has gone through stages of development: first of all, Helbing and Molnar (1995) have modeled the original force for the normal situation. Second, Helbing and his co-workers (2000) have incorporated the panic situation into this force by incorporating the panic parameter to account for the panic situations. Third, Lakoba and Kaup (2005) have provided the pedestrians some kind of intelligence by incorporating aspects of the decision-making capability. In this paper, the authors analyze the most important incorporations into the model regarding the preferred force. They make comparisons between the different factors of these incorporations. Furthermore, to enhance the decision-making ability of the pedestrians, they introduce additional features such as the familiarity factor to the preferred force to let it appear more representative of what actually happens in reality.

Keywords: Pedestrian movement, social force model, preferredforce, familiarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
714 Linear Programming Application in Unit Commitment of Wind Farms with Considering Uncertainties

Authors: M. Esmaeeli Shahrakht, A. Kazemi

Abstract:

Due to uncertainty of wind velocity, wind power generators don’t have deterministic output power. Utilizing wind power generation and thermal power plants together create new concerns for operation engineers of power systems. In this paper, a model is presented to implement the uncertainty of load and generated wind power which can be utilized in power system operation planning. Stochastic behavior of parameters is simulated by generating scenarios that can be solved by deterministic method. A mixed-integer linear programming method is used for solving deterministic generation scheduling problem. The proposed approach is applied to a 12-unit test system including 10 thermal units and 2 wind farms. The results show affectivity of piecewise linear model in unit commitment problems. Also using linear programming causes a considerable reduction in calculation times and guarantees convergence to the global optimum. Neglecting the uncertainty of wind velocity causes higher cost assessment of generation scheduling.

Keywords: Load uncertainty, linear programming, scenario generation, unit commitment, wind farm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2936
713 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport

Authors: Dominic Wentworth-Linton, Shian Gao

Abstract:

This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.

Keywords: CFD simulation, internal combustion engine, intake system, dynamometer test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
712 Novel Adaptive Channel Equalization Algorithms by Statistical Sampling

Authors: János Levendovszky, András Oláh

Abstract:

In this paper, novel statistical sampling based equalization techniques and CNN based detection are proposed to increase the spectral efficiency of multiuser communication systems over fading channels. Multiuser communication combined with selective fading can result in interferences which severely deteriorate the quality of service in wireless data transmission (e.g. CDMA in mobile communication). The paper introduces new equalization methods to combat interferences by minimizing the Bit Error Rate (BER) as a function of the equalizer coefficients. This provides higher performance than the traditional Minimum Mean Square Error equalization. Since the calculation of BER as a function of the equalizer coefficients is of exponential complexity, statistical sampling methods are proposed to approximate the gradient which yields fast equalization and superior performance to the traditional algorithms. Efficient estimation of the gradient is achieved by using stratified sampling and the Li-Silvester bounds. A simple mechanism is derived to identify the dominant samples in real-time, for the sake of efficient estimation. The equalizer weights are adapted recursively by minimizing the estimated BER. The near-optimal performance of the new algorithms is also demonstrated by extensive simulations. The paper has also developed a (Cellular Neural Network) CNN based approach to detection. In this case fast quadratic optimization has been carried out by t, whereas the task of equalizer is to ensure the required template structure (sparseness) for the CNN. The performance of the method has also been analyzed by simulations.

Keywords: Cellular Neural Network, channel equalization, communication over fading channels, multiuser communication, spectral efficiency, statistical sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
711 MHD Non-Newtonian Nanofluid Flow over a Permeable Stretching Sheet with Heat Generation and Velocity Slip

Authors: Rama Bhargava, Mania Goyal

Abstract:

The problem of magnetohydrodynamics boundary layer flow and heat transfer on a permeable stretching surface in a second grade nanofluid under the effect of heat generation and partial slip is studied theoretically. The Brownian motion and thermophoresis effects are also considered. The boundary layer equations governed by the PDE’s are transformed into a set of ODE’s with the help of local similarity transformations. The differential equations are solved by variational finite element method. The effects of different controlling parameters on the flow field and heat transfer characteristics are examined. The numerical results for the dimensionless velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically. The comparison confirmed excellent agreement. The present study is of great interest in coating and suspensions, cooling of metallic plate, oils and grease, paper production, coal water or coal-oil slurries, heat exchangers technology, materials processing exploiting.

Keywords: Viscoelastic nanofluid, partial slip, stretching sheet, heat generation/absorption, MHD flow, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3275
710 Numerical Simulation of Multiple Arrays Arrangement of Micro Hydro Power Turbines

Authors: M. A. At-Tasneem, N. T. Rao, T. M. Y. S. Tuan Ya, M. S. Idris, M. Ammar

Abstract:

River flow over micro hydro power (MHP) turbines of multiple arrays arrangement is simulated with computational fluid dynamics (CFD) software to obtain the flow characteristics. In this paper, CFD software is used to simulate the water flow over MHP turbines as they are placed in a river. Multiple arrays arrangement of MHP turbines lead to generate large amount of power. In this study, a river model is created and simulated in CFD software to obtain the water flow characteristic. The process then continued by simulating different types of arrays arrangement in the river model. A MHP turbine model consists of a turbine outer body and static propeller blade in it. Five types of arrangements are used which are parallel, series, triangular, square and rhombus with different spacing sizes. The velocity profiles on each MHP turbines are identified at the mouth of each turbine bodies. This study is required to obtain the arrangement with increasing spacing sizes that can produce highest power density through the water flow variation.

Keywords: Micro hydro power, CFD, arrays arrangement, spacing sizes, velocity profile, power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110