Search results for: simulate.
116 Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines
Authors: Ahmed M. Hemeida, Wael A. Farag, Osama A. Mahgoub
Abstract:
This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.Keywords: FAST, Permanent Magnet Synchronous Generator(PMSG), TurbSim, Vector Control and Pitch Control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5609115 Impact of Electronic Word-of-Mouth to Consumer Adoption Process in the Online Discussion Forum: A Simulation Study
Authors: Aussadavut Dumrongsiri
Abstract:
Web-based technologies have created numerous opportunities for electronic word-of-mouth (eWOM) communication. There are many factors that affect customer adoption and decisionmaking process. However, only a few researches focus on some factors such as the membership time of forum and propensity to trust. Using a discrete-time event simulation to simulate a diffusion model along with a consumer decision model, the study shows the effect of each factor on adoption of opinions on on-line discussion forum. The purpose of this study is to examine the effect of factor affecting information adoption and decision making process. The model is constructed to test quantitative aspects of each factor. The simulation study shows the membership time and the propensity to trust has an effect on information adoption and purchasing decision. The result of simulation shows that the longer the membership time in the communities and the higher propensity to trust could lead to the higher demand rates because consumers find it easier and faster to trust the person in the community and then adopt the eWOM. Other implications for both researchers and practitioners are provided.Keywords: word of mouth, simulation, consumer behavior, ebusiness, marketing, diffusion process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3197114 Speeding up Nonlinear Time History Analysis of Base-Isolated Structures Using a Nonlinear Exponential Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
The nonlinear time history analysis of seismically base-isolated structures can require a significant computational effort when the behavior of each seismic isolator is predicted by adopting the widely used differential equation Bouc-Wen model. In this paper, a nonlinear exponential model, able to simulate the response of seismic isolation bearings within a relatively large displacements range, is described and adopted in order to reduce the numerical computations and speed up the nonlinear dynamic analysis. Compared to the Bouc-Wen model, the proposed one does not require the numerical solution of a nonlinear differential equation for each time step of the analysis. The seismic response of a 3d base-isolated structure with a lead rubber bearing system subjected to harmonic earthquake excitation is simulated by modeling each isolator using the proposed analytical model. The comparison of the numerical results and computational time with those obtained by modeling the lead rubber bearings using the Bouc-Wen model demonstrates the good accuracy of the proposed model and its capability to reduce significantly the computational effort of the analysis.
Keywords: Base isolation, computational efficiency, nonlinear exponential model, nonlinear time history analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980113 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation
Authors: P. D. Pastuszak
Abstract:
The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.Keywords: Active thermography, finite element analysis, composite, curved structures, defects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711112 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method
Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava
Abstract:
In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329111 Turbine Trip without Bypass Analysis of Kuosheng Nuclear Power Plant Using TRACE Coupling with FRAPTRAN
Authors: J. R. Wang, H. T. Lin, H. C. Chang, W. K. Lin, W. Y. Li, C. Shih
Abstract:
This analysis of Kuosheng nuclear power plant (NPP) was performed mainly by TRACE, assisted with FRAPTRAN and FRAPCON. SNAP v2.2.1 and TRACE v5.0p3 are used to develop the Kuosheng NPP SPU TRACE model which can simulate the turbine trip without bypass transient. From the analysis of TRACE, the important parameters such as dome pressure, coolant temperature and pressure can be determined. Through these parameters, comparing with the criteria which were formulated by United States Nuclear Regulatory Commission (U.S. NRC), we can determine whether the Kuoshengnuclear power plant failed or not in the accident analysis. However, from the data of TRACE, the fuel rods status cannot be determined. With the information from TRACE and burn-up analysis obtained from FRAPCON, FRAPTRAN analyzes more details about the fuel rods in this transient. Besides, through the SNAP interface, the data results can be presented as an animation. From the animation, the TRACE and FRAPTRAN data can be merged together that may be realized by the readers more easily. In this research, TRACE showed that the maximum dome pressure of the reactor reaches to 8.32 MPa, which is lower than the acceptance limit 9.58 MPa. Furthermore, FRAPTRAN revels that the maximum strain is about 0.00165, which is below the criteria 0.01. In addition, cladding enthalpy is 52.44 cal/g which is lower than 170 cal/g specified by the USNRC NUREG-0800 Standard Review Plan.
Keywords: Turbine trip without bypass, Kuosheng NPP, TRACE, FRAPTRAN, SNAP animation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485110 An Anisotropic Model of Damage and Unilateral Effect for Brittle Materials
Authors: José Julio de C. Pituba
Abstract:
This work deals with the initial applications and formulation of an anisotropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.
Keywords: Damage model, plastic strain, unilateral effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829109 Optimization and Feasibility Analysis of PV/Wind/ Battery Hybrid Energy Conversion
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand alone systems.
Keywords: Wind stand-alone system, Photovoltaic stand-alone system, Hybrid system, Optimum system sizing, feasibility, Cost analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116108 Plants Cover Effects on Overland Flow and on Soil Erosion under Simulated Rainfall Intensity
Authors: H. Madi, L. Mouzai, M. Bouhadef
Abstract:
The purpose of this article is to study the effects of plants cover on overland flow and, therefore, its influences on the amount of eroded and transported soil. In this investigation, all the experiments were conducted in the LEGHYD laboratory using a rainfall simulator and a soil tray. The experiments were conducted using an experimental plot (soil tray) which is 2m long, 0.5 m wide and 0.15 m deep. The soil used is an agricultural sandy soil (62,08% coarse sand, 19,14% fine sand, 11,57% silt and 7,21% clay). Plastic rods (4 mm in diameter) were used to simulate the plants at different densities: 0 stem/m2 (bared soil), 126 stems/m², 203 stems/m², 461 stems/m² and 2500 stems/m²). The used rainfall intensity is 73mm/h and the soil tray slope is fixed to 3°. The results have shown that the overland flow velocities decreased with increasing stems density, and the density cover has a great effect on sediment concentration. Darcy–Weisbach and Manning friction coefficients of overland flow increased when the stems density increased. Froude and Reynolds numbers decreased with increasing stems density and, consequently, the flow regime of all treatments was laminar and subcritical. From these findings, we conclude that increasing the plants cover can efficiently reduce soil loss and avoid denuding the roots plants.
Keywords: Soil erosion, vegetation, stems density, overland flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3126107 Theoretical Modeling and Experimental Study of Combustion and Performance Characteristics of Biodiesel in Turbocharged Low Heat Rejection D.I Diesel Engine
Authors: B.Rajendra Prasath, P.Tamilporai, Mohd.F.Shabir
Abstract:
An effort has been taken to simulate the combustion and performance characteristics of biodiesel fuel in direct injection (D.I) low heat rejection (LHR) diesel engine. Comprehensive analyses on combustion characteristics such as cylinder pressure, peak cylinder pressure, heat release and performance characteristics such as specific fuel consumption and brake thermal efficiency are carried out. Compression ignition (C.I) engine cycle simulation was developed and modified in to LHR engine for both diesel and biodiesel fuel. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. A gas-wall heat transfer calculations are based on the ANNAND-s combined heat transfer model with instantaneous wall temperature to analyze the effect of coating on heat transfer. The simulated results are validated by conducting the experiments on the test engine under identical operating condition on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha oil) blended with diesel and used in both conventional and LHR engine. The simulated combustion and performance characteristics results are found satisfactory with the experimental value.Keywords: Biodiesel, Direct injection, Low heat rejection, Turbocharged engine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775106 Investigating the Dynamic Response of the Ballast
Authors: Osama Brinji, Wing Kong Chiu, Graham Tew
Abstract:
Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast.
Keywords: Ballast, dynamic response, sleeper, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650105 Study of Heat Transfer in the Poly Ethylene Fluidized Bed Reactor Numerically and Experimentally
Authors: Mahdi Hamzehei
Abstract:
In this research, heat transfer of a poly Ethylene fluidized bed reactor without reaction were studied experimentally and computationally at different superficial gas velocities. A multifluid Eulerian computational model incorporating the kinetic theory for solid particles was developed and used to simulate the heat conducting gas–solid flows in a fluidized bed configuration. Momentum exchange coefficients were evaluated using the Syamlal– O-Brien drag functions. Temperature distributions of different phases in the reactor were also computed. Good agreement was found between the model predictions and the experimentally obtained data for the bed expansion ratio as well as the qualitative gas–solid flow patterns. The simulation and experimental results showed that the gas temperature decreases as it moves upward in the reactor, while the solid particle temperature increases. Pressure drop and temperature distribution predicted by the simulations were in good agreement with the experimental measurements at superficial gas velocities higher than the minimum fluidization velocity. Also, the predicted time-average local voidage profiles were in reasonable agreement with the experimental results. The study showed that the computational model was capable of predicting the heat transfer and the hydrodynamic behavior of gas-solid fluidized bed flows with reasonable accuracy.Keywords: Gas-solid flows, fluidized bed, Hydrodynamics, Heat transfer, Turbulence model, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960104 A Group Setting of IED in Microgrid Protection Management System
Authors: Jyh-Cherng Gu, Ming-Ta Yang, Chao-Fong Yan, Hsin-Yung Chung, Yung-Ruei Chang, Yih-Der Lee, Chen-Min Chan, Chia-Hao Hsu
Abstract:
There are a number of Distributed Generations (DGs) installed in microgrid, which may have diverse path and direction of power flow or fault current. The overcurrent protection scheme for the traditional radial type distribution system will no longer meet the needs of microgrid protection. Integrating the Intelligent Electronic Device (IED) and a Supervisory Control and Data Acquisition (SCADA) with IEC 61850 communication protocol, the paper proposes a Microgrid Protection Management System (MPMS) to protect power system from the fault. In the proposed method, the MPMS performs logic programming of each IED to coordinate their tripping sequence. The GOOSE message defined in IEC 61850 is used as the transmission information medium among IEDs. Moreover, to cope with the difference in fault current of microgrid between grid-connected mode and islanded mode, the proposed MPMS applies the group setting feature of IED to protect system and robust adaptability. Once the microgrid topology varies, the MPMS will recalculate the fault current and update the group setting of IED. Provided there is a fault, IEDs will isolate the fault at once. Finally, the Matlab/Simulink and Elipse Power Studio software are used to simulate and demonstrate the feasibility of the proposed method.Keywords: IEC 61850, IED, Group Setting, Microgrid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268103 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications
Authors: A. Faro, D. Giordano, F. Maiorana
Abstract:
Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542102 Numerical Simulation of Three-Dimensional Cavitating Turbulent Flow in Francis Turbines with ANSYS
Authors: Raza Abdulla Saeed
Abstract:
In this study, the three-dimensional cavitating turbulent flow in a complete Francis turbine is simulated using mixture model for cavity/liquid two-phase flows. Numerical analysis is carried out using ANSYS CFX software release 12, and standard k-ε turbulence model is adopted for this analysis. The computational fluid domain consist of spiral casing, stay vanes, guide vanes, runner and draft tube. The computational domain is discretized with a threedimensional mesh system of unstructured tetrahedron mesh. The finite volume method (FVM) is used to solve the governing equations of the mixture model. Results of cavitation on the runner’s blades under three different boundary conditions are presented and discussed. From the numerical results it has been found that the numerical method was successfully applied to simulate the cavitating two-phase turbulent flow through a Francis turbine, and also cavitation is clearly predicted in the form of water vapor formation inside the turbine. By comparison the numerical prediction results with a real runner; it’s shown that the region of higher volume fraction obtained by simulation is consistent with the region of runner cavitation damage.Keywords: Computational Fluid Dynamics, Hydraulic Francis Turbine, Numerical Simulation, Two-Phase Mixture Cavitation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227101 Simulation of the Pedestrian Flow in the Tawaf Area Using the Social Force Model
Authors: Zarita Zainuddin, Kumatha Thinakaran, Mohammed Shuaib
Abstract:
In today-s modern world, the number of vehicles is increasing on the road. This causes more people to choose walking instead of traveling using vehicles. Thus, proper planning of pedestrians- paths is important to ensure the safety of pedestrians in a walking area. Crowd dynamics study the pedestrians- behavior and modeling pedestrians- movement to ensure safety in their walking paths. To date, many models have been designed to ease pedestrians- movement. The Social Force Model is widely used among researchers as it is simpler and provides better simulation results. We will discuss the problem regarding the ritual of circumambulating the Ka-aba (Tawaf) where the entrances to this area are usually congested which worsens during the Hajj season. We will use the computer simulation model SimWalk which is based on the Social Force Model to simulate the movement of pilgrims in the Tawaf area. We will first discuss the effect of uni and bi-directional flows at the gates. We will then restrict certain gates to the area as the entrances only and others as exits only. From the simulations, we will study the effect of the distance of other entrances from the beginning line and their effects on the duration of pilgrims circumambulate Ka-aba. We will distribute the pilgrims at the different entrances evenly so that the congestion at the entrances can be reduced. We would also discuss the various locations and designs of barriers at the exits and its effect on the time taken for the pilgrims to exit the Tawaf area.Keywords: circumambulation, Ka'aba, pedestrian flow, SFM, Tawaf , entrance, exit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773100 High Speed Video Transmission for Telemedicine using ATM Technology
Authors: J. P. Dubois, H. M. Chiu
Abstract:
In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.Keywords: ATM, multiplexing, queueing, telemedicine, VBR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174499 Numerical Simulation of Inviscid Transient Flows in Shock Tube and its Validations
Authors: Al-Falahi Amir, Yusoff M. Z, Yusaf T
Abstract:
The aim of this paper is to develop a new two dimensional time accurate Euler solver for shock tube applications. The solver was developed to study the performance of a newly built short-duration hypersonic test facility at Universiti Tenaga Nasional “UNITEN" in Malaysia. The facility has been designed, built, and commissioned for different values of diaphragm pressure ratios in order to get wide range of Mach number. The developed solver uses second order accurate cell-vertex finite volume spatial discretization and forth order accurate Runge-Kutta temporal integration and it is designed to simulate the flow process for similar driver/driven gases (e.g. air-air as working fluids). The solver is validated against analytical solution and experimental measurements in the high speed flow test facility. Further investigations were made on the flow process inside the shock tube by using the solver. The shock wave motion, reflection and interaction were investigated and their influence on the performance of the shock tube was determined. The results provide very good estimates for both shock speed and shock pressure obtained after diaphragm rupture. Also detailed information on the gasdynamic processes over the full length of the facility is available. The agreements obtained have been reasonable.
Keywords: shock tunnel, shock tube, shock wave, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 275198 Evaluation of Deformable Boundary Condition Using Finite Element Method and Impact Test for Steel Tubes
Authors: Abed Ahmed, Mehrdad Asadi, Jennifer Martay
Abstract:
Stainless steel pipelines are crucial components to transportation and storage in the oil and gas industry. However, the rise of random attacks and vandalism on these pipes for their valuable transport has led to more security and protection for incoming surface impacts. These surface impacts can lead to large global deformations of the pipe and place the pipe under strain, causing the eventual failure of the pipeline. Therefore, understanding how these surface impact loads affect the pipes is vital to improving the pipes’ security and protection. In this study, experimental test and finite element analysis (FEA) have been carried out on EN3B stainless steel specimens to study the impact behaviour. Low velocity impact tests at 9 m/s with 16 kg dome impactor was used to simulate for high momentum impact for localised failure. FEA models of clamped and deformable boundaries were modelled to study the effect of the boundaries on the pipes impact behaviour on its impact resistance, using experimental and FEA approach. Comparison of experimental and FE simulation shows good correlation to the deformable boundaries in order to validate the robustness of the FE model to be implemented in pipe models with complex anisotropic structure.
Keywords: Dynamic impact, deformable boundary conditions, finite element modeling, FEM, finite element, FE, LS-DYNA, Stainless steel pipe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70297 Numerical Simulation for a Shallow Braced Excavation of Campus Building
Authors: Sao-Jeng Chao, Wen-Cheng Chen, Wei-Humg Lu
Abstract:
In order to prevent encountering unpredictable factors, geotechnical engineers always conduct numerical analysis for braced excavation design. Simulation work in advance can predict the response of subsequent excavation and thus will be designed to increase the security coefficient of construction. The parameters that are considered include geological conditions, soil properties, soil distributions, loading types, and the analysis and design methods. National Ilan University is located on the LanYang plain, mainly deposited by clayey soil and loose sand, and thus is vulnerable to external influence displacement. National Ilan University experienced a construction of braced excavation with a complete program of monitoring excavation. This study takes advantage of a one-dimensional finite element method RIDO to simulate the excavation process. The predicted results from numerical simulation analysis are compared with the monitored results of construction to explore the differences between them. Numerical simulation analysis of the excavation process can be used to analyze retaining structures for the purpose of understanding the relationship between the displacement and supporting system. The resulting deformation and stress distribution from the braced excavation cab then be understand in advance. The problems can be prevented prior to the construction process, and thus acquire all the affected important factors during design and construction.
Keywords: Excavation, numerical simulation, rido, retaining structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 91796 Early Age Behavior of Wind Turbine Gravity Foundations
Authors: J. Modu, J. F. Georgin, L. Briançon, E. Antoinet
Abstract:
Wind turbine gravity foundations are designed to resist overturning failure through gravitational forces resulting from their masses. Owing to the relatively high volume of the cementitious material present, the foundations tend to suffer thermal strains and internal cracking due to high temperatures and temperature gradients depending on factors such as geometry, mix design and level of restraint. This is a result of a fully coupled mechanism commonly known as THMC (Thermo- Hygro - Mechanical - Chemical) coupling whose kinetics peak during the early age of concrete. The focus of this paper is therefore to present and offer a discussion on the temperature and humidity evolutions occurring in mass pours such as wind turbine gravity foundations based on sensor results obtained from the monitoring of an actual wind turbine foundation. To offer prediction of the evolutions, the formulation of a 3D Thermal-Hydro-Chemical (THC) model that is mainly derived from classical fundamental physical laws is also presented and discussed. The THC model can be mathematically fully coupled in Finite Element analyses. In the current study, COMSOL Multi-physics software was used to simulate the 3D THC coupling that occurred in the monitored wind turbine foundation to predict the temperature evolution at five different points within the foundation from time of casting.
Keywords: Early age behavior, reinforced concrete, THC 3D models, wind turbines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45395 Study of Forging Process in 7075 Aluminum Alloy Professional Bicycle Pedal using Taguchi Method
Authors: Dyi-Cheng Chen, Wen-Hsuan Ku, Ming-Ren Chen
Abstract:
The current of professional bicycle pedal-s manufacturing model mostly used casting, forging, die-casting processing methods, so the paper used 7075 aluminum alloy which is to produce the bicycle parts most commonly, and employs the rigid-plastic finite element (FE) DEFORMTM 3D software to simulate and to analyze the professional bicycle pedal design. First we use Solid works 2010 3D graphics software to design the professional bicycle pedal of the mold and appearance, then import finite element (FE) DEFORMTM 3D software for analysis. The paper used rigid-plastic model analytical methods, and assuming mode to be rigid body. A series of simulation analyses in which the variables depend on different temperature of forging billet, friction factors, forging speed, mold temperature are reveal to effective stress, effective strain, damage and die radial load distribution for forging bicycle pedal. The analysis results hope to provide professional bicycle pedal forming mold references to identified whether suit with the finite element results for high-strength design suitability of aluminum alloy.Keywords: Bicycle pedal, finite element analysis, 7075 aluminum alloy, Taguchi method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279194 Influence of Slope Shape and Surface Roughness on the Moving Paths of a Single Rockfall
Authors: Iau-Teh Wang, Chin-Yu Lee
Abstract:
Rockfall is a kind of irregular geological disaster. Its destruction time, space and movements are highly random. The impact force is determined by the way and velocity rocks move. The movement velocity of a rockfall depends on slope gradient of its moving paths, height, slope surface roughness and rock shapes. For effectively mitigate and prevent disasters brought by rockfalls, it is required to precisely calculate the moving paths of a rockfall so as to provide the best protective design. This paper applies Colorado Rockfall Simulation Program (CRSP) as our study tool to discuss the impact of slope shape and surface roughness on the moving paths of a single rockfall. The analytical results showed that the slope, m=1:1, acted as the threshold for rockfall bounce height on a monoclinal slight slope. When JRC ´╝£ 1.2, movement velocity reduced and bounce height increased as JCR increased. If slope fixed and JRC increased, the bounce height of rocks increased gradually with reducing movement velocity. Therefore, the analysis on the moving paths of rockfalls with CRSP could simulate bouncing of falling rocks. By analyzing moving paths, velocity, and bounce height of falling rocks, we could effectively locate impact points of falling rocks on a slope. Such analysis can be served as a reference for future disaster prevention and control.Keywords: Rockfall, Slope Shape, Moving Path, SurfaceRoughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280993 Experimental and Numerical Study of A/C Outletsand Its Impact on Room Airflow Characteristics
Authors: Mohammed A. Aziz, Ibrahim A. M. Gad, El Shahat F. A. Mohammed, Ramy H. Mohammed
Abstract:
This paper investigates experimental and numerical study of the airflow characteristics for vortex, round and square ceiling diffusers and its effect on the thermal comfort in a ventilated room. Three different thermal comfort criteria namely; Mean Age of the Air (MAA), ventilation effectiveness (E), and Effective Draft Temperature (EDT) have been used to predict the thermal comfort zone inside the room. In experimental work, a sub-scale room is set-up to measure the temperature field in the room. In numerical analysis, unstructured grids have been used to discretize the numerical domain. Conservation equations are solved using FLUENT commercial flow solver. The code is validated by comparing the numerical results obtained from three different turbulence models with the available experimental data. The comparison between the various numerical models shows that the standard k-ε turbulence model can be used to simulate these cases successfully. After validation of the code, effect of supply air velocity on the flow and thermal field could be investigated and hence the thermal comfort. The results show that the pressure coefficient created by the square diffuser is 1.5 times greater than that created by the vortex diffuser. The velocity decay coefficient is nearly the same for square and round diffusers and is 2.6 times greater than that for the vortex diffuser.
Keywords: Ceiling diffuser, Thermal Comfort, MAA, EDT, Fluent, Turbulence model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214292 Static and Dynamic Three-Dimensional Finite Element Analysis of Pelvic Bone
Authors: M. S. El-Asfoury, M. A. El-Hadek
Abstract:
The complex shape of the human pelvic bone was successfully imaged and modeled using finite element FE processing. The bone was subjected to quasi-static and dynamic loading conditions simulating the effect of both weight gain and impact. Loads varying between 500 – 2500 N (~50 – 250 Kg of weight) was used to simulate 3D quasi-static weight gain. Two different 3D dynamic analyses, body free fall at two different heights (1 and 2 m) and forced side impact at two different velocities (20 and 40 Km/hr) were also studied. The computed resulted stresses were compared for the four loading cases, where Von Misses stresses increases linearly with the weight gain increase under quasi-static loading. For the dynamic models, the Von Misses stress history behaviors were studied for the affected area and effected load with respect to time. The normalization Von Misses stresses with respect to the applied load were used for comparing the free fall and the forced impact load results. It was found that under the forced impact loading condition an over lapping behavior was noticed, where as for the free fall the normalized Von Misses stresses behavior was found to nonlinearly different. This phenomenon was explained through the energy dissipation concept. This study will help designers in different specialization in defining the weakest spots for designing different supporting systems.Keywords: Pelvic Bone, Static and Dynamic Analysis, Three- Dimensional Finite Element Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214191 Temperature Distribution in Friction Stir Welding Using Finite Element Method
Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim
Abstract:
During welding, the amount of heat present in weld zones determines the quality of weldment produced. Thus, the heat distribution characteristics and its magnitude in weld zones with respect to process variables such as tool pin-shoulder rotational and traveling speed during welding is analyzed using thermal finite element analyses method. For this purpose, transient thermal finite element analyses are performed to model the temperatures distribution and its quantities in weld-zones with respect to process variables such as rotational speed and traveling speed during welding. Commercially available software Altair HyperWork is used to model three-dimensional tool pin-shoulder vs. workpieces and to simulate the friction stir process. The results show that increasing tool rotational speed, at a constant traveling speed, will increase the amount of heat generated in weld-zones. In contrary, increasing traveling speed, at constant tool pin-shoulder rotational speeds, will reduce the amount of heat generated in weld zones.
Keywords: Frictions Stir Welding, Temperature Distribution, Finite Element Method, Altair Hyperwork.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 395790 Action Potential Propagation in Inhomogeneous 2D Mouse Ventricular Tissue Model
Authors: Mouse, cardiac myocytes, computer simulation, action potential.
Abstract:
Heterogeneous repolarization causes dispersion of the T-wave and has been linked to arrhythmogenesis. Such heterogeneities appear due to differential expression of ionic currents in different regions of the heart, both in healthy and diseased animals and humans. Mice are important animals for the study of heart diseases because of the ability to create transgenic animals. We used our previously reported model of mouse ventricular myocytes to develop 2D mouse ventricular tissue model consisting of 14,000 cells (apical or septal ventricular myocytes) and to study the stability of action potential propagation and Ca2+ dynamics. The 2D tissue model was implemented as a FORTRAN program code for highperformance multiprocessor computers that runs on 36 processors. Our tissue model is able to simulate heterogeneities not only in action potential repolarization, but also heterogeneities in intracellular Ca2+ transients. The multicellular model reproduced experimentally observed velocities of action potential propagation and demonstrated the importance of incorporation of realistic Ca2+ dynamics for action potential propagation. The simulations show that relatively sharp gradients of repolarization are predicted to exist in 2D mouse tissue models, and they are primarily determined by the cellular properties of ventricular myocytes. Abrupt local gradients of channel expression can cause alternans at longer pacing basic cycle lengths than gradual changes, and development of alternans depends on the site of stimulation.
Keywords: Mouse, cardiac myocytes, computer simulation, action potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147489 Computer Simulation of Low Volume Roads Made from Recycled Materials
Authors: Aleš Florian, Lenka Ševelová
Abstract:
Low volume roads are widely used all over the world. To improve their quality the computer simulation of their behavior is proposed. The FEM model enables to determine stress and displacement conditions in the pavement and/or also in the particular material layers. Different variants of pavement layers, material used, humidity as well as loading conditions can be studied. Among others, the input information about material properties of individual layers made from recycled materials is crucial for obtaining results as exact as possible. For this purpose the cyclic-load triaxial test machine testing of cyclic-load performance of materials is a promising test method. The test is able to simulate the real traffic loading on particular materials taking into account the changes in the horizontal stress conditions produced in particular layers by crossings of vehicles. Also the test specimen can be prepared with different amount of water. Thus modulus of elasticity (Young modulus) of different materials including recycled ones can be measured under the different conditions of horizontal and vertical stresses as well as under the different humidity conditions. Using the proposed testing procedure the modulus of elasticity of recycled materials used in the newly built low volume road is obtained under different stress and humidity conditions set to standard, dry and fully saturated level. Obtained values of modulus of elasticity are used in FEA.
Keywords: FEA, FEM, geotechnical materials, low volume roads, pavement, triaxial test, Young modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162588 Numerical Investigation of Nanofluid Based Thermosyphon System
Authors: Kiran Kumar K, Ramesh Babu Bejjam, Atul Najan
Abstract:
A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore, it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nanofluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis onedimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nanofluid as working fluids in the loop.
Keywords: Heat exchanger, Heat transfer, Nanofluid, Thermosyphon loop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250087 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model
Authors: Bassim Bachy, Joerg Franke
Abstract:
In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multifunctional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.
Keywords: Laser Structuring, Simulation, Finite element analysis, Thermal modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4345