Search results for: numerical simulation.
4846 A Two-Phase Mechanism for Agent's Action Selection in Soccer Simulation
Authors: Vahid Salmani, Mahmoud Naghibzadeh, Farid Seifi, Amirhossein Taherinia
Abstract:
Soccer simulation is an effort to motivate researchers and practitioners to do artificial and robotic intelligence research; and at the same time put into practice and test the results. Many researchers and practitioners throughout the world are continuously working to polish their ideas and improve their implemented systems. At the same time, new groups are forming and they bring bright new thoughts to the field. The research includes designing and executing robotic soccer simulation algorithms. In our research, a soccer simulation player is considered to be an intelligent agent that is capable of receiving information from the environment, analyze it and to choose the best action from a set of possible ones, for its next move. We concentrate on developing a two-phase method for the soccer player agent to choose its best next move. The method is then implemented into our software system called Nexus simulation team of Ferdowsi University. This system is based on TsinghuAeolus[1] team that was the champion of the world RoboCup soccer simulation contest in 2001 and 2002.
Keywords: RoboCup, Soccer simulation, multi-agent environment, intelligent soccer agent, ball controller agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15484845 Investigation on Mesh Sensitivity of a Transient Model for Nozzle Clogging
Authors: H. Barati, M. Wu, A. Kharicha, A. Ludwig
Abstract:
A transient model for nozzle clogging has been developed and successfully validated against a laboratory experiment. Key steps of clogging are considered: transport of particles by turbulent flow towards the nozzle wall; interactions between fluid flow and nozzle wall, and the adhesion of the particle on the wall; the growth of the clog layer and its interaction with the flow. The current paper is to investigate the mesh (size and type) sensitivity of the model in both two and three dimensions. It is found that the algorithm for clog growth alone excluding the flow effect is insensitive to the mesh type and size, but the calculation including flow becomes sensitive to the mesh quality. The use of 2D meshes leads to overestimation of the clog growth because the 3D nature of flow in the boundary layer cannot be properly solved by 2D calculation. 3D simulation with tetrahedron mesh can also lead to an error estimation of the clog growth. A mesh-independent result can be achieved with hexahedral mesh, or at least with triangular prism (inflation layer) for near-wall regions.
Keywords: Clogging, nozzle, numerical model, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8434844 Hydrodynamic Characteristics of a New Sewer Overflow Screening Device: CFD Modeling & Analytical Study
Authors: M. A. Aziz, M. A. Imteaz, J. Naser, D. I. Phillips
Abstract:
Some of the major concerns regarding sewer overflows to receiving water bodies include serious environmental, aesthetic and public health problems. A noble self-cleansing sewer overflow screening device having a sewer overflow chamber, a rectangular tank and a slotted ogee weir to capture the gross pollutants has been investigated. Computational Fluid Dynamics (CFD) techniques are used to simulate the flow phenomena with two different inlet orientations; parallel and perpendicular to the weir direction. CFD simulation results are compared with analytical results. Numerical results show that the flow is not uniform (across the width of the inclined surface) near the top of the inclined surface. The flow becomes uniform near the bottom of the inclined surface, with significant increase of shear stress. The simulation results promises for an effective and efficient self-cleansing sewer overflow screening device by comparing hydrodynamic results.
Keywords: Hydrodynamic Characteristics, Ogee Spillway, Screening, Sewer Overflow Device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21804843 Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Centric Thrust Load: Numerical Aspects
Authors: Mário C. Ricci
Abstract:
A known iterative computational procedure is used for internal normal ball loads calculation in statically loaded single-row, angular-contact ball bearings, subjected to a known thrust load, which is applied in the inner ring at the geometric bearing center line. Numerical aspects of the iterative procedure are discussed. Numerical examples results for a 218 angular-contact ball bearing have been compared with those from the literature. Twenty figures are presented showing the geometrical features, the behavior of the convergence variables and the following parameters as functions of the thrust load: normal ball loads, contact angle, distance between curvature centers, and normal ball and axial deflections between the raceways.Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18764842 Residence Time Distribution in a Two Impinging Streams Cyclone Reactor: CFD Prediction and Experimental Validation
Authors: Nahid Ghasemi, Morteza Sohrabi, Yasan Soleymani
Abstract:
The quantified residence time distribution (RTD) provides a numerical characterization of mixing in a reactor, thus allowing the process engineer to better understand mixing performance of the reactor.This paper discusses computational studies to investigate flow patterns in a two impinging streams cyclone reactor(TISCR) . Flow in the reactor was modeled with computational fluid dynamics (CFD). Utilizing the Eulerian- Lagrangian approach, implemented in FLUENT (V6.3.22), particle trajectories were obtained by solving the particle force balance equations. From simulation results obtained at different Δts, the mean residence time (tm) and the mean square deviation (σ2) were calculated. a good agreement can be observed between predicted and experimental data. Simulation results indicate that the behavior of complex reactor systems can be predicted using the CFD technique with minimum data requirement for validation.Keywords: Impinging streams reactor, Residence timedistribution, CFD, Eulerian-Lagrangian approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23804841 Material Failure Process Simulation by Improve Finite Elements with Embedded Discontinuities
Authors: Juárez-Luna Gelacio, Ayala Gustavo, Retama-Velasco Jaime
Abstract:
This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface.
To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.
Keywords: Variational formulation, strong discontinuity, embedded discontinuities, strain localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17744840 Numerical Simulation and Analysis of Axially Restrained Steel Cellular Beams in Fire
Authors: Asal Pournaghshband
Abstract:
This paper presents the development of a finite element model to study the large deflection behaviour of restrained stainless steel cellular beams at elevated temperature. Cellular beams are widely used for efficient utilization of raw materials to facilitate long spans with faster construction resulting sustainable design solution that can enhance the performance and merit of any construction project. However, their load carrying capacity is less than the equivalent beams without opening due to developing shear-moment interaction at the openings. In structural frames due to elements continuity, such beams are restrained by their adjoining members which has a substantial effect on beams behaviour in fire. Stainless steel has also become integral part of the build environment due to its excellent corrosion resistance, whole life-cycle costs, and sustainability. This paper reports the numerical investigations into the effect of structural continuity on the thermo-mechanical performance of restrained steel beams with circle and elongated circle shapes of web opening in fire. The numerical model is firstly validated using existing numerical results from the literature, and then employed to perform a parametric study. Parametric studies to explore the influence of variation in i) axial restraint stiffness, ii) steel grades, iii) shape and size of web openings, and iv) load level were described. Hence, the structural continuity is evaluated through the application of different levels of axial restraints on the response of carbon steel and stainless steel cellular beam in fire. The transit temperature for stainless steel cellular beam is shown to be less affected by the level of axial stiffness than the equivalent carbon steel cellular beam. Overall, it was established that whereas stainless steel cellular beams show similar stages of behaviour of carbon steel cellular beams in fire, they are capable of withstanding higher temperatures prior to the onset of catenary action in large deflection, despite the higher thermal expansion of stainless steel material.
Keywords: Axial restraint, catenary action, cellular beam, fire, numerical modelling, stainless steel, transit temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874839 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type
Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long
Abstract:
This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.
Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16644838 Forward Kinematics Analysis of a 3-PRS Parallel Manipulator
Authors: Ghasem Abbasnejad, Soheil Zarkandi, Misagh Imani
Abstract:
In this article the homotopy continuation method (HCM) to solve the forward kinematic problem of the 3-PRS parallel manipulator is used. Since there are many difficulties in solving the system of nonlinear equations in kinematics of manipulators, the numerical solutions like Newton-Raphson are inevitably used. When dealing with any numerical solution, there are two troublesome problems. One is that good initial guesses are not easy to detect and another is related to whether the used method will converge to useful solutions. Results of this paper reveal that the homotopy continuation method can alleviate the drawbacks of traditional numerical techniques.
Keywords: Forward kinematics, Homotopy continuationmethod, Parallel manipulators, Rotation matrix
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26704837 Heat Transfer and Turbulent Fluid Flow over Vertical Double Forward-Facing Step
Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, A. Badarudin, N. M Adam, S. Masuri
Abstract:
Numerical study of heat transfer and fluid flow over vertical double forward facing step were presented. The k-w model with finite volume method was employed to solve continuity, momentum, and energy equations. Different step heights were adopted for range of Reynolds number varied from 10000 to 40000, and range of temperature varied from 310K to 340 K. The straight side of duct is insulated while the side of double forward facing step is heated. The result shows augmentation of heat transfer due to the recirculation region created after and before steps. Effect of step length and Reynolds number observed on increase of local Nusselt number particularly at recirculation regions. Contour of streamline velocity is plotted to show recirculation regions after and before steps. Numerical simulation in this paper done by used ANSYS FLUENT 14.
Keywords: Turbulent flow, Double forward, Heat transfer, Separation flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26994836 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments
Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing
Abstract:
Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.Keywords: Central composite design, CO2 liquefaction, Latin Hypercube Sampling, simulation – based optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7464835 Numerical Comparison of Rushton Turbine and CD-6 Impeller in Non-Newtonian Fluid Stirred Tank
Authors: Akhilesh Khapre, Basudeb Munshi
Abstract:
A computational fluid dynamics simulation is done for non-Newtonian fluid in a baffled stirred tank. The CMC solution is taken as non-Newtonian shear thinning fluid for simulation. The Reynolds Average Navier Stocks equation with steady state multi reference frame approach is used to simulate flow in the stirred tank. The turbulent flow field is modelled using realizable k-ε turbulence model. The simulated velocity profiles of Rushton turbine is validated with literature data. Then, the simulated flow field of CD-6 impeller is compared with the Rushton turbine. The flow field generated by CD-6 impeller is less in magnitude than the Rushton turbine. The impeller global parameter, power number and flow number, and entropy generation due to viscous dissipation rate is also reported.
Keywords: Computational fluid dynamics, non-Newtonian, Rushton turbine, CD-6 impeller, power number, flow number, viscous dissipation rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41524834 A Robust TVD-WENO Scheme for Conservation Laws
Authors: A. Abdalla, A. Kaltayev
Abstract:
The ultimate goal of this article is to develop a robust and accurate numerical method for solving hyperbolic conservation laws in one and two dimensions. A hybrid numerical method, coupling a cheap fourth order total variation diminishing (TVD) scheme [1] for smooth region and a Robust seventh-order weighted non-oscillatory (WENO) scheme [2] near discontinuities, is considered. High order multi-resolution analysis is used to detect the high gradients regions of the numerical solution in order to capture the shocks with the WENO scheme, while the smooth regions are computed with fourth order total variation diminishing (TVD). For time integration, we use the third order TVD Runge-Kutta scheme. The accuracy of the resulting hybrid high order scheme is comparable with these of WENO, but with significant decrease of the CPU cost. Numerical demonstrates that the proposed scheme is comparable to the high order WENO scheme and superior to the fourth order TVD scheme. Our scheme has the added advantage of simplicity and computational efficiency. Numerical tests are presented which show the robustness and effectiveness of the proposed scheme.
Keywords: WENO scheme, TVD schemes, smoothness indicators, multi-resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20184833 Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor
Authors: Aref Maalej, Marwa Fakhfakh, Wael Ben Amira
Abstract:
We present in this work a numerical investigation of fluid-structure interaction to study the elastic behavior of flexible rotors. The principal aim is to provide the effect of the aero/hydrodynamic parameters on the bending deformation of flexible rotors. This study is accomplished using the strong two-way fluid-structure interaction (FSI) developed by the ANSYS Workbench software. This method is used for coupling the fluid solver to the transient structural solver to study the elastic behavior of flexible rotors in water. In this study, we use a moderately flexible rotor modeled by a single blade with simplified rectangular geometry. In this work, we focus on the effect of the rotational frequency on the flapwise bending deformation. It is demonstrated that the blade deforms in the downstream direction and the amplitude of these deformations increases with the rotational frequencies. Also, from a critical frequency, the blade begins to deform in the upstream direction.
Keywords: Numerical simulation, flexible blade, fluid-structure interaction, ANSYS Workbench, flapwise deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354832 The Effect of Clamping Restrain on the Prediction of Drape Simulation Software Tool
Authors: T.A. Adegbola, IEA Aghachi, E.R. Sadiku
Abstract:
To investigates the effect of fiberglass clamping process improvement on drape simulation prediction. This has great effect on the mould and the fiber during manufacturing process. This also, improves the fiber strain, the quality of the fiber orientation in the area of folding and wrinkles formation during the press-forming process. Drape simulation software tool was used to digitalize the process, noting the formation problems on the contour sensitive part. This was compared with the real life clamping processes using single and double frame set-ups to observe the effects. Also, restrains are introduced by using clips, and the G-clamps with predetermine revolution to; restrain the fabric deformation during the forming process.The incorporation of clamping and fabric restrain deformation improved on the prediction of the simulation tool. Therefore, for effective forming process, incorporation of clamping process into the drape simulation process will assist in the development of fiberglass application in manufacturing process.Keywords: clamping, fiberglass, drape simulation, pressforming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15654831 Average Turbulent Pipe Flow with Heat Transfer Using a Three-Equation Model
Authors: Khalid Alammar
Abstract:
Aim of this study is to evaluate a new three-equation turbulence model applied to flow and heat transfer through a pipe. Uncertainty is approximated by comparing with published direct numerical simulation results for fully-developed flow. Error in the mean axial velocity, temperature, friction, and heat transfer is found to be negligible.
Keywords: Heat Transfer, Nusselt number, Skin friction, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24504830 Simulation of a Multi-Component Transport Model for the Chemical Reaction of a CVD-Process
Abstract:
In this paper we present discretization and decomposition methods for a multi-component transport model of a chemical vapor deposition (CVD) process. CVD processes are used to manufacture deposition layers or bulk materials. In our transport model we simulate the deposition of thin layers. The microscopic model is based on the heavy particles, which are derived by approximately solving a linearized multicomponent Boltzmann equation. For the drift-process of the particles we propose diffusionreaction equations as well as for the effects of heat conduction. We concentrate on solving the diffusion-reaction equation with analytical and numerical methods. For the chemical processes, modelled with reaction equations, we propose decomposition methods and decouple the multi-component models to simpler systems of differential equations. In the numerical experiments we present the computational results of our proposed models.
Keywords: Chemical reactions, chemical vapor deposition, convection-diffusion-reaction equations, decomposition methods, multi-component transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14144829 Numerical Investigation of Improved Aerodynamic Performance of a NACA 0015 Airfoil Using Synthetic Jet
Authors: K. Boualem, T. Yahiaoui, A. Azzi
Abstract:
Numerical investigations are performed to analyze the flow behavior over NACA0015 and to evaluate the efficiency of synthetic jet as active control device. The second objective of this work is to investigate the influence of momentum coefficient of synthetic jet on the flow behaviour. The unsteady Reynolds-averaged Navier-Stokes equations of the turbulent flow are solved using, k-ω SST provided by ANSYS CFX-CFD code. The model presented in this paper is a comprehensive representation of the information found in the literature. Comparison of obtained numerical flow parameters with the experimental ones shows that the adopted computational procedure reflects nearly the real flow nature. Also, numerical results state that use of synthetic jets devices has positive effects on the flow separation, and thus, aerodynamic performance improvement of NACA0015 airfoil. It can also be observed that the use of synthetic jet increases the lift coefficient about 13.3% and reduces the drag coefficient about 52.7%.
Keywords: Active control, CFD, NACA airfoil, synthetic jet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16644828 Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers
Authors: N. K. Singh
Abstract:
In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number.
Keywords: Heat transfer, channel with vortex generators, numerical simulation, effect of Reynolds number on heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24394827 Evolutionary Computing Approach for the Solution of Initial value Problems in Ordinary Differential Equations
Authors: A. Junaid, M. A. Z. Raja, I. M. Qureshi
Abstract:
An evolutionary computing technique for solving initial value problems in Ordinary Differential Equations is proposed in this paper. Neural network is used as a universal approximator while the adaptive parameters of neural networks are optimized by genetic algorithm. The solution is achieved on the continuous grid of time instead of discrete as in other numerical techniques. The comparison is carried out with classical numerical techniques and the solution is found with a uniform accuracy of MSE ≈ 10-9 .
Keywords: Neural networks, Unsupervised learning, Evolutionary computing, Numerical methods, Fitness evaluation function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17844826 Simulation of the Evacuation of Ships Carrying Dangerous Goods from Tsunami
Authors: Yoshinori Matsuura, Saori Iwanaga
Abstract:
The Great East Japan Earthquake occurred at 14:46 on Friday, March 11, 2011. It was the most powerful known earthquake to have hit Japan. The earthquake triggered extremely destructive tsunami waves of up to 40.5 meters in height. We focus on the ship’s evacuation from tsunami. Then we analyze about ships evacuation from tsunami using multi-agent simulation and we want to prepare for a coming earthquake. We developed a simulation model of ships that set sail from the port in order to evacuate from the tsunami considering the ship carrying dangerous goods.
Keywords: Multi-agent simulation, Ship’s evacuation, Tsunami.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19024825 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations
Authors: Shishen Xie
Abstract:
In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations
Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21344824 Simulation of the Airflow Characteristic inside a Hard Disk Drive by Applying a Computational Fluid Dynamics Software
Authors: Chanchal Saha, Huynh Trung Luong, M. H. Aziz, Tharinan Rattanalert
Abstract:
Now-a-days, numbers of simulation software are being used all over the world to solve Computational Fluid Dynamics (CFD) related problems. In this present study, a commercial CFD simulation software namely STAR-CCM+ is applied to analyze the airflow characteristics inside a 2.5" hard disk drive. Each step of the software is described adequately to obtain the output and the data are verified with the theories to justify the robustness of the simulation outcome. This study gives an insight about the accuracy level of the CFD simulation software to compute CFD related problems although it largely depends upon the computer speed. Also this study will open avenues for further research.Keywords: Computational fluid dynamics, Hard disk drive, Meshing, Recirculation filter, and Filter physics parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21644823 The Temperature Range in the Simulation of Residual Stress and Hot Tearing During Investment Casting
Authors: Saeid Norouzi, Ali Shams, Hassan Farhangi, Alireza Darvish
Abstract:
Hot tear cracking and residual stress are two different consequences of thermal stress both of which can be considered as casting problem. The purpose of the present study is simulation of the effect of casting shape characteristic on hot tearing and residual stress. This study shows that the temperature range for simulation of hot tearing and residual stress are different. In this study, in order to study the development of thermal stress and to predict the hot tearing and residual stress of shaped casting, MAGMASOFT simulation program was used. The strategy of this research was the prediction of hot tear location using pinpointing hot spot and thermal stress concentration zones. The results shows that existing of stress concentration zone increases the hot tearing probability and consequently reduces the amount of remaining residual stress in casting parts.
Keywords: Hot tearing, residual stress, simulation, investment casting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27274822 Asynchronous Microcontroller Simulation Model in VHDL
Authors: M. Kovac
Abstract:
This article describes design of the 8-bit asynchronous microcontroller simulation model in VHDL. The model is created in ISE Foundation design tool and simulated in Modelsim tool. This model is a simple application example of asynchronous systems designed in synchronous design tools. The design process of creating asynchronous system with 4-phase bundled-data protocol and with matching delays is described in the article. The model is described in gate-level abstraction. The simulation waveform of the functional construction is the result of this article. Described construction covers only the simulation model. The next step would be creating synthesizable model to FPGA.Keywords: Asynchronous, Microcontroller, VHDL, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33074821 Development of Effective Cooling Schemes of Gas Turbine Blades Based on Computer Simulation
Authors: Pasayev, A., C. Askerov, R. Sadiqov, C. Ardil
Abstract:
In contrast to existing of calculation of temperature field of a profile part a blade with convective cooling which are not taking into account multi connective in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM AND FDM) numerical methods from the point of view of a realization on the PC. The theoretical substantiation of these methods is proved by the appropriate theorems.
Keywords: multi coherent systems, method of the boundary integrated equations, singular operators, gas turbines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16524820 A Numerical Model for Studying Convectional Lifting Processes in the Tropics
Authors: Chantawan Noisri, Robert Harold Buchanan Exell
Abstract:
A simple model for studying convectional lifting processes in the tropics is described in this paper with some tests of the model in dry air. The model consists of the density equation, the wind equation, the vertical velocity equation, and the temperature equation. The model domain is two-dimensional with length 100 km and height 17.5 km. Plan for experiments to investigate the effects of the heating surface, the deep convection approximation and the treatment of velocities at the boundaries are discussed. Equations for the simplified treatment of moisture in the atmosphere in future numerical experiments are also given.Keywords: Numerical weather prediction, Finite differences, Convection lifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12954819 Material Parameter Identification of Modified AbdelKarim-Ohno Model
Authors: M. Cermak, T. Karasek, J. Rojicek
Abstract:
The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.
Keywords: Genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23744818 Application of Simulation and Response Surface to Optimize Hospital Resources
Authors: Shamsuddin Ahmed, Francis Amagoh
Abstract:
This paper presents a case study that uses processoriented simulation to identify bottlenecks in the service delivery system in an emergency department of a hospital in the United Arab Emirates. Using results of the simulation, response surface models were developed to explain patient waiting time and the total time patients spend in the hospital system. Results of the study could be used as a service improvement tool to help hospital management in improving patient throughput and service quality in the hospital system.Keywords: Simulation, Hospital Service, Resource Utilization, United Arab Emirates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15014817 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation
Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim
Abstract:
In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results is in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes.
Keywords: Semi-Lagrangian method, Iteration free method, Nonlinear advection-diffusion equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495