Search results for: generation modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3170

Search results for: generation modeling

2810 Modeling of Random Variable with Digital Probability Hyper Digraph: Data-Oriented Approach

Authors: A. Habibizad Navin, M. Naghian Fesharaki, M. Mirnia, M. Kargar

Abstract:

In this paper we introduce Digital Probability Hyper Digraph for modeling random variable as the hierarchical data-oriented model.

Keywords: Data-Oriented Models, Data Structure, DigitalProbability Hyper Digraph, Random Variable, Statistic andProbability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
2809 Intact and ACL-Deficient Knee MODEL Evaluation

Authors: A. Vairis, M. Petousis, B. Kandyla, C. Chrisoulakis

Abstract:

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. To produce the necessary joint compliance and stability for optimal daily function various menisci and ligaments are present while muscle forces are used to this effect. Therefore, knowledge of the complex mechanical interactions of these load bearing structures is necessary when treatment of relevant diseases is evaluated and assisting devices are designed. Numerical tools such as finite element analysis are suitable for modeling such joints in order to understand their physics. They have been used in the current study to develop an accurate human knee joint and model its mechanical behavior. To evaluate the efficacy of this articulated model, static load cases were used for comparison purposes with previous experimentally verified modeling works drawn from literature.

Keywords: biomechanics, finite element modeling, knee joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
2808 A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality

Authors: Hoshang Kolivand, Mahyar Kolivand, Mohd Shahrizal Sunar, Mohd Azhar M. Arsad

Abstract:

Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. Δ+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments.

Keywords: Silhouette detection, shadow volumes, real-time shadows, rendering, augmented reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
2807 Modeling and Simulation Methods Using MATLAB/Simulink

Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,

Abstract:

This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.

Keywords: Model Based Design, MATLAB, Simulink, Stateflow, plant model, real time model, real-time workshop, target language compiler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
2806 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation

Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood

Abstract:

This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.

Keywords: VCSELs, optical power generation, power consumption, square wave modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 522
2805 CART Method for Modeling the Output Power of Copper Bromide Laser

Authors: Iliycho P. Iliev, Desislava S. Voynikova, Snezhana G. Gocheva-Ilieva

Abstract:

This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.

Keywords: Classification and regression trees (CART), Copper Bromide laser (CuBr laser), laser generation, nonparametric statistical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
2804 A Comparative Study of the Modeling and Quality Control of the Propylene-Propane Classical Distillation and Distillation Column with Heat Pump

Authors: C. Patrascioiu, Cao Minh Ahn

Abstract:

The paper presents the research evolution in the propylene – propane distillation process, especially for the distillation columns equipped with heat pump. The paper is structured in three parts: separation of the propylene-propane mixture, steady state process modeling, and quality control systems. The first part is dedicated to state of art of the two distillation processes. The second part continues the author’s researches of the steady state process modeling. There has been elaborated a software simulation instrument that may be used to dynamic simulation of the process and to design the quality control systems. The last part presents the research of the control systems, especially for quality control systems.

Keywords: Distillation, absorption, heat pump, Unisim Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
2803 Centralized Controller for Microgrid

Authors: Adel Hamad Rafa

Abstract:

This paper, proposes a control system for use with microgrid consiste of  multiple small scale embedded generation networks (SSEG networks) connected to the 33kV distribution network. The proposed controller controls power flow in the grid-connected mode of operation, enables voltage and frequency control when the SSEG networks are islanded, and resynchronises the SSEG networks with the utility before reconnecting them. The performance of the proposed controller has been tested in simulations using PSCAD.

Keywords: Microgrid, Small scale embedded generation, island mode, resynchronisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
2802 Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software

Authors: M. Khal, Ab. Algouti, A. Algouti

Abstract:

Water erosion is the major cause of the erosion that shapes the earth's surface. Modeling water erosion requires the use of software and GIS programs, commercial or closed source. The very high prices for commercial GIS licenses, motivates users and researchers to find open source software as relevant and applicable as the proprietary GIS. The objective of this study is the modeling of water erosion and the hydrogeological and morphophysical characterization of the Oued M'Goun watershed (southern flank of the Central High Atlas) developed by free programs of GIS. The very pertinent results are obtained by executing tasks and algorithms in a simple and easy way. Thus, the various geoscientific and geostatistical analyzes of a digital elevation model (SRTM 30 m resolution) and their combination with the treatments and interpretation of satellite imagery information allowed us to characterize the region studied and to map the area most vulnerable to water erosion.

Keywords: Central High-Atlas, hydrogeology, M’Goun watershed, OpenGIS, water erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
2801 The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová, Vladimír Habán

Abstract:

A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An incompressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.

Keywords: Computational modeling, mathematical model, hydrodynamic gap, matrices of mass, stiffness and damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
2800 Acausal and Causal Model Construction with FEM Approach Using Modelica

Authors: Oke Oktavianty, Tadayuki Kyoutani, Shigeyuki Haruyama, Junji Kaneko, Ken Kaminishi

Abstract:

Modelica has many advantages and it is very useful in modeling and simulation especially for the multi-domain with a complex technical system. However, the big obstacle for a beginner is to understand the basic concept and to build a new system model for a real system. In order to understand how to solve the simple circuit model by hand translation and to get a better understanding of how modelica works, we provide a detailed explanation about solver ordering system in horizontal and vertical sorting and make some proposals for improvement. In this study, some difficulties in using modelica software with the original concept and the comparison with Finite Element Method (FEM) approach is discussed. We also present our textual modeling approach using FEM concept for acausal and causal model construction. Furthermore, simulation results are provided that demonstrate the comparison between using textual modeling with original coding in modelica and FEM concept.

Keywords: FEM, acausal model, modelica, horizontal and vertical sorting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
2799 Membrane Distillation Process Modeling: Dynamical Approach

Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati

Abstract:

This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated.

Keywords: Membrane distillation, Dynamical modeling, Advection-diffusion equation, Thermal equilibrium, Heat equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2818
2798 Modeling Language for Machine Learning

Authors: Tsuyoshi Okita, Tatsuya Niwa

Abstract:

For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem.

Keywords: Formal language, statistical inference problem, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
2797 New Approach for Load Modeling

Authors: S. Chokri

Abstract:

Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
2796 Evaluating the Interactions of Co2-Ionic Liquid Systems through Molecular Modeling

Authors: S. Yamini Sudha, Ashok Khanna

Abstract:

Owing to the stringent environmental legislations, CO2 capture and sequestration is one of the viable solutions to reduce the CO2 emissions from various sources. In this context, Ionic liquids (ILs) are being investigated as suitable absorption media for CO2 capture. Due to their non-evaporative, non-toxic, and non-corrosive nature, these ILs have the potential to replace the existing solvents like aqueous amine solutions for CO2 separation technologies. Thus, the present work aims at studying the important aspects such as the interactions of CO2 molecule with different anions (F-, Br-, Cl-, NO3 -, BF4 -, PF6 -, Tf2N-, and CF3SO3 -) that are commonly used in ILs through molecular modeling. In this, the minimum energy structures have been obtained using Ab initio based calculations at MP2 (Moller-Plesset perturbation) level. Results revealed various degrees of distortion of CO2 molecule (from its linearity) with the anions studied, most likely due to the Lewis acid-base interactions between CO2 and anion. Furthermore, binding energies for the anion-CO2 complexes were also calculated. The implication of anion-CO2 interactions to the solubility of CO2 in ionic liquids is also discussed.

Keywords: CO2, Ionic liquids, capture, molecular modeling, sequestration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2673
2795 Finite Element Modeling to Predict the Effect of Nose Radius on the Equivalent Strain (PEEQ) for Titanium Alloy (Ti-6Al-4V)

Authors: Moaz H. Ali, M. N. M. Ansari, Pang Jing Shen

Abstract:

In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent plastic strain (PEEQ) was estimated by using finite element modeling (FEM) and applied through ABAQUS/EXPLICIT software. The simulation results led to conclude that the equivalent plastic strain (PEEQ) was increased and surface roughness (Ra) decreased when increasing nose radius, rz (mm) during the machining of titanium alloy (Ti–6Al–4V) in dry cutting conditions.

Keywords: Finite element modeling (FEM), nose radius, plastic strain (PEEQ), titanium alloy (Ti-6Al-4V).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
2794 Development of an Autonomous Greenhouse Gas Monitoring System

Authors: Breda M. Kiernan, Cormac Fay, Stephen Beirne, Dermot Diamond

Abstract:

This paper describes the designs of a first and second generation autonomous gas monitoring system and the successful field trial of the final system (2nd generation). Infrared sensing technology is used to detect and measure the greenhouse gases methane (CH4) and carbon dioxide (CO2) at point sources. The ability to monitor real-time events is further enhanced through the implementation of both GSM and Bluetooth technologies to communicate these data in real-time. These systems are robust, reliable and a necessary tool where the monitoring of gas events in real-time are needed.

Keywords: Environmental monitoring, infrared sensing, autonomous system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
2793 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: Connected-car, data modeling, route planning, navigation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
2792 Augmenting People's Creative Idea Generation Using an Artificial Intelligent Sketching Collaborator

Authors: Joseph Maloba Makokha

Abstract:

Idea generation is an important part of the design process, and many strategies to support this stage have been developed. As artificial intelligence (AI) gains adoption in many domains, we need to understand its role, if any, in the design process. This paper introduces the concept of a “Disruptive Interjector”, an AI system that frequently interjects with suggestions based on observing what a user does. The concept emanates from a study that was conducted with pairs of humans on one hand, and human-AI pairs on the other collaborating on idea generation by sketching. Results from a study show that participants who collaborated with, and took cues from the AI sketch suggestions generated more ideas; and also had more ideas ranked by experts as “creative” compared to two humans working together on the same tasks. It is notable that while researchers from diverse fields of engineering, psychology, art and others have explored conditions and environments that enhance people's creativity - and have provided insights on creativity in general - there still exists a gap on the role that AI can play on creativity. We attempt to narrow this gap.

Keywords: Artificial intelligence, design collaboration, creativity, human-machine collaboration, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
2791 Energy Production from Marine Biomass: Fuel Cell Power Generation Driven by Methane Produced from Seaweed

Authors: Shinya Yokoyama, Katsunari Jonouchi, Kenji Imou

Abstract:

This paper discusses the utilization of marine biomass as an energy resource in Japan. A marine biomass energy system in Japan was proposed consisting of seaweed cultivation (Laminaria japonica) at offshore marine farms, biogas production via methane fermentation of the seaweeds, and fuel cell power generation driven by the generated biogas. We estimated energy output, energy supply potential, and CO2 mitigation in Japan on the basis of the proposed system. As a result, annual energy production was estimated to be 1.02-109 kWh/yr at nine available sites. Total CO2 mitigation was estimated to be 1.04-106 tonnes per annum at the nine sites. However, the CO2 emission for the construction of relevant facilities is not taken into account in this paper. The estimated CO2 mitigation is equivalent to about 0.9% of the required CO2 mitigation for Japan per annum under the Kyoto Protocol framework.

Keywords: CO2 mitigation, Fuel cell power generation, Laminaria japonica, Marine biomass, Seaweed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4703
2790 Neural Networks: From Black Box towards Transparent Box Application to Evapotranspiration Modeling

Authors: A. Johannet, B. Vayssade, D. Bertin

Abstract:

Neural networks are well known for their ability to model non linear functions, but as statistical methods usually does, they use a no parametric approach thus, a priori knowledge is not obvious to be taken into account no more than the a posteriori knowledge. In order to deal with these problematics, an original way to encode the knowledge inside the architecture is proposed. This method is applied to the problem of the evapotranspiration inside karstic aquifer which is a problem of huge utility in order to deal with water resource.

Keywords: Neural-Networks, Hydrology, Evapotranpiration, Hidden Function Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
2789 Modeling Biology Inspired Reactive Agents Using X-machines

Authors: George Eleftherakis, Petros Kefalas, Anna Sotiriadou, Evangelos Kehris

Abstract:

Recent advances in both the testing and verification of software based on formal specifications of the system to be built have reached a point where the ideas can be applied in a powerful way in the design of agent-based systems. The software engineering research has highlighted a number of important issues: the importance of the type of modeling technique used; the careful design of the model to enable powerful testing techniques to be used; the automated verification of the behavioural properties of the system; the need to provide a mechanism for translating the formal models into executable software in a simple and transparent way. This paper introduces the use of the X-machine formalism as a tool for modeling biology inspired agents proposing the use of the techniques built around X-machine models for the construction of effective, and reliable agent-based software systems.

Keywords: Biology inspired agent, formal methods, x-machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
2788 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito

Abstract:

For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

Keywords: Hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
2787 Model of Continuous Cheese Whey Fermentation by Candida Pseudotropicalis

Authors: Rudy Agustriyanto, Akbarningrum Fatmawati

Abstract:

The utilization of cheese whey as a fermentation substrate to produce bio-ethanol is an effort to supply bio-ethanol demand as a renewable energy. Like other process systems, modeling is also required for fermentation process design, optimization and plant operation. This research aims to study the fermentation process of cheese whey by applying mathematics and fundamental concept in chemical engineering, and to investigate the characteristic of the cheese whey fermentation process. Steady state simulation results for inlet substrate concentration of 50, 100 and 150 g/l, and various values of hydraulic retention time, showed that the ethanol productivity maximum values were 0.1091, 0.3163 and 0.5639 g/l.h respectively. Those values were achieved at hydraulic retention time of 20 hours, which was the minimum value used in this modeling. This showed that operating reactor at low hydraulic retention time was favorable. Model of bio-ethanol production from cheese whey will enhance the understanding of what really happen in the fermentation process.

Keywords: Cheese whey, ethanol, fermentation, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
2786 A Novel Q-algorithm for EPC Global Class-1 Generation-2 Anti-collision Protocol

Authors: Wen-Tzu Chen, Wen-Bin Kao

Abstract:

This paper provides a scheme to improve the read efficiency of anti-collision algorithm in EPCglobal UHF Class-1 Generation-2 RFID standard. In this standard, dynamic frame slotted ALOHA is specified to solve the anti-collision problem. Also, the Q-algorithm with a key parameter C is adopted to dynamically adjust the frame sizes. In the paper, we split the C parameter into two parameters to increase the read speed and derive the optimal values of the two parameters through simulations. The results indicate our method outperforms the original Q-algorithm.

Keywords: RFID, anti-collision, Q algorithm, ALOHA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4623
2785 Application of Turbulence Modeling in Computational Fluid Dynamics for Airfoil Simulations

Authors: Mohammed Bilal

Abstract:

The precise prediction of aerodynamic behavior is necessary for the design and optimization of airfoils for a variety of applications. Turbulence, a phenomenon of complex and irregular flow, significantly affects the aerodynamic properties of airfoils. Therefore, turbulence modeling is essential for accurately predicting the behavior of airfoils in simulations. This study investigates five commonly employed turbulence models: Spalart-Allmaras (SA) model, k-epsilon model, k-omega model, Reynolds Stress Model (RSM), and Large Eddy Simulation (LES) model. The paper includes a comparison of the models' precision, computational expense, and applicability to various flow conditions. The strengths and weaknesses of each model are highlighted, allowing researchers and engineers to make informed decisions regarding simulations of specific airfoils. Unquestionably, the continuous development of turbulence modeling will contribute to further improvements in airfoil design and optimization, which will be advantageous to numerous industries.

Keywords: Computational fluid dynamics, airfoil, turbulence, aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208
2784 Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model

Authors: Mustapha Kamel Mihoubi, Hocine Dahmani

Abstract:

Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution.

Keywords: Swell, current, radiation, stress, mesh, MIKE21, sediment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
2783 Verification of Protocol Design using UML - SMV

Authors: Prashanth C.M., K. Chandrashekar Shet

Abstract:

In recent past, the Unified Modeling Language (UML) has become the de facto industry standard for object-oriented modeling of the software systems. The syntax and semantics rich UML has encouraged industry to develop several supporting tools including those capable of generating deployable product (code) from the UML models. As a consequence, ensuring the correctness of the model/design has become challenging and extremely important task. In this paper, we present an approach for automatic verification of protocol model/design. As a case study, Session Initiation Protocol (SIP) design is verified for the property, “the CALLER will not converse with the CALLEE before the connection is established between them ". The SIP is modeled using UML statechart diagrams and the desired properties are expressed in temporal logic. Our prototype verifier “UML-SMV" is used to carry out the verification. We subjected an erroneous SIP model to the UML-SMV, the verifier could successfully detect the error (in 76.26ms) and generate the error trace.

Keywords: Unified Modeling Language, Statechart, Verification, Protocol Design, Model Checking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
2782 Power Control in a Doubly Fed Induction Machine

Authors: A. Ourici

Abstract:

This paper proposes a direct power control for doubly-fed induction machine for variable speed wind power generation. It provides decoupled regulation of the primary side active and reactive power and it is suitable for both electric energy generation and drive applications. In order to control the power flowing between the stator of the DFIG and the network, a decoupled control of active and reactive power is synthesized using PI controllers.The obtained simulation results show the feasibility and the effectiveness of the suggested method

Keywords: Doubly fed induction machine , decoupled power control , vector control , active and reactive power, PWM inverter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
2781 Influence of Ambient Condition on Performance of Wet Compression Process

Authors: Kyoung Hoon Kim

Abstract:

Gas turbine systems with wet compression have a potential for future power generation, since they can offer a high efficiency and a high specific power with a relatively low cost. In this study influence of ambient condition on the performance of the wet compression process is investigated with a non-equilibrium analytical modeling based on droplet evaporation. Transient behaviors of droplet diameter and temperature of mixed air are investigated for various ambient temperatures. Special attention is paid for the effects of ambient temperature, pressure ratio, and water injection ratios on the important wet compression variables including compressor outlet temperature and compression work. Parametric studies show that downing of the ambient temperature leads to lower compressor outlet temperature and consequently lower consumption of compression work even in wet compression processes.

Keywords: water injection, droplet evaporation, wet compression, gas turbine, ambient condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727