%0 Journal Article
	%A S. Yamini Sudha and  Ashok Khanna
	%D 2009
	%J International Journal of Chemical and Molecular Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 33, 2009
	%T Evaluating the Interactions of Co2-Ionic Liquid Systems through Molecular Modeling
	%U https://publications.waset.org/pdf/5258
	%V 33
	%X Owing to the stringent environmental legislations,
CO2 capture and sequestration is one of the viable solutions to reduce
the CO2 emissions from various sources. In this context, Ionic liquids
(ILs) are being investigated as suitable absorption media for CO2
capture. Due to their non-evaporative, non-toxic, and non-corrosive
nature, these ILs have the potential to replace the existing solvents
like aqueous amine solutions for CO2 separation technologies. Thus,
the present work aims at studying the important aspects such as the
interactions of CO2 molecule with different anions (F-, Br-, Cl-, NO3
-,
BF4
-, PF6
-, Tf2N-, and CF3SO3
-) that are commonly used in ILs
through molecular modeling. In this, the minimum energy structures
have been obtained using Ab initio based calculations at MP2
(Moller-Plesset perturbation) level. Results revealed various degrees
of distortion of CO2 molecule (from its linearity) with the anions
studied, most likely due to the Lewis acid-base interactions between
CO2 and anion. Furthermore, binding energies for the anion-CO2
complexes were also calculated. The implication of anion-CO2
interactions to the solubility of CO2 in ionic liquids is also discussed.
	%P 524 - 527