Search results for: Soft sets.
523 An Engineering Approach to Forecast Volatility of Financial Indices
Authors: Irwin Ma, Tony Wong, Thiagas Sankar
Abstract:
By systematically applying different engineering methods, difficult financial problems become approachable. Using a combination of theory and techniques such as wavelet transform, time series data mining, Markov chain based discrete stochastic optimization, and evolutionary algorithms, this work formulated a strategy to characterize and forecast non-linear time series. It attempted to extract typical features from the volatility data sets of S&P100 and S&P500 indices that include abrupt drops, jumps and other non-linearity. As a result, accuracy of forecasting has reached an average of over 75% surpassing any other publicly available results on the forecast of any financial index.Keywords: Discrete stochastic optimization, genetic algorithms, genetic programming, volatility forecast
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630522 Convergence and Divergence in Telephone Conversations: A Case of Persian
Authors: Anna Mirzaiyan, Vahid Parvaresh, Mahmoud Hashemian, Masoud Saeedi
Abstract:
People usually have a telephone voice, which means they adjust their speech to fit particular situations and to blend in with other interlocutors. The question is: Do we speak differently to different people? This possibility has been suggested by social psychologists within Accommodation Theory [1]. Converging toward the speech of another person can be regarded as a polite speech strategy while choosing a language not used by the other interlocutor can be considered as the clearest example of speech divergence [2]. The present study sets out to investigate such processes in the course of everyday telephone conversations. Using Joos-s [3] model of formality in spoken English, the researchers try to explore convergence to or divergence from the addressee. The results propound the actuality that lexical choice, and subsequently, patterns of style vary intriguingly in concordance with the person being addressed.Keywords: Convergence, divergence, lexical formality, speechaccommodation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3517521 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms
Authors: T. S. Chou, K. K. Yen, J. Luo
Abstract:
The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933520 Fast Segmentation for the Piecewise Smooth Mumford-Shah Functional
Authors: Yingjie Zhang
Abstract:
This paper is concerned with an improved algorithm based on the piecewise-smooth Mumford and Shah (MS) functional for an efficient and reliable segmentation. In order to speed up convergence, an additional force, at each time step, is introduced further to drive the evolution of the curves instead of only driven by the extensions of the complementary functions u + and u - . In our scheme, furthermore, the piecewise-constant MS functional is integrated to generate the extra force based on a temporary image that is dynamically created by computing the union of u + and u - during segmenting. Therefore, some drawbacks of the original algorithm, such as smaller objects generated by noise and local minimal problem also are eliminated or improved. The resulting algorithm has been implemented in Matlab and Visual Cµ, and demonstrated efficiently by several cases.Keywords: Active contours, energy minimization, image segmentation, level sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860519 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques
Authors: Faisal Alshuwaier, Ali Areshey
Abstract:
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound (BB) method to simplify the texts.
Keywords: Extraction, Max-Prod, Fuzzy Relations, Text Mining, Memberships, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184518 The Establishment of Cause-System of Poor Construction Site Safety and Priority Analysis from Different Perspectives
Authors: Shirong Li, Xueping Xiang
Abstract:
Construction site safety in China has aroused comprehensive concern all over the world. It is imperative to investigate the main causes of poor construction site safety. This paper divides all the causes into four aspects, namely the factors of workers, object, environment and management and sets up the accident causes element system based on Delphi Method. This is followed by the application of structural equation modeling to examine the importance of each aspect of causes from the standpoints of different roles related to the construction respectively. The results indicate that all the four aspects of factors are in need of improvement, and different roles have different ideas considering the priority of those factors. The paper has instructive significance for the practitioners to take measures to improve construction site safety in China accordingly.Keywords: construction site safety, Delphi Method, structuralequation modeling, different perspective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942517 Wavelet-Based Despeckling of Synthetic Aperture Radar Images Using Adaptive and Mean Filters
Authors: Syed Musharaf Ali, Muhammad Younus Javed, Naveed Sarfraz Khattak
Abstract:
In this paper we introduced new wavelet based algorithm for speckle reduction of synthetic aperture radar images, which uses combination of undecimated wavelet transformation, wiener filter (which is an adaptive filter) and mean filter. Further more instead of using existing thresholding techniques such as sure shrinkage, Bayesian shrinkage, universal thresholding, normal thresholding, visu thresholding, soft and hard thresholding, we use brute force thresholding, which iteratively run the whole algorithm for each possible candidate value of threshold and saves each result in array and finally selects the value for threshold that gives best possible results. That is why it is slow as compared to existing thresholding techniques but gives best results under the given algorithm for speckle reduction.
Keywords: Brute force thresholding, directional smoothing, direction dependent mask, undecimated wavelet transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2880516 Identification of Service Quality Determinants in the Hotel Sector: A Conceptual Review
Authors: Asem M. Othman
Abstract:
The expansion of the hospitality industry is distinctive in the 21st century. Services, by nature, are intangible. Hence, service quality, in general, is a complicated process to be measured and evaluated. Hotels, as a service sector and part of the hospitality industry, are growing rapidly. This research paper was carried out to identify the quality determinants that may affect hotel guests’ service quality perception. In this research paper, each quality determinant will be discussed, illustrated, and justified thoroughly via a systematic literature review. This paper sets the stage to measure the significant influence of the service quality determinants on guest satisfaction. The knowledge contribution from this study proposes to practitioners and/or hotel service providers, fundamental elements to adopt the implications into their policies.
Keywords: Hotel service, service quality, quality determinants, quality management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463515 Identification of MIMO Systems Using Neuro-Fuzzy Models with a Shuffled Frog Leaping Algorithm
Authors: Sana Bouzaida, Anis Sakly, Faouzi M'Sahli
Abstract:
In this paper, a TSK-type Neuro-fuzzy Inference System that combines the features of fuzzy sets and neural networks has been applied for the identification of MIMO systems. The procedure of adapting parameters in TSK model employs a Shuffled Frog Leaping Algorithm (SFLA) which is inspired from the memetic evolution of a group of frogs when seeking for food. To demonstrate the accuracy and effectiveness of the proposed controller, two nonlinear systems have been considered as the MIMO plant, and results have been compared with other learning methods based on Particle Swarm Optimization algorithm (PSO) and Genetic Algorithm (GA).Keywords: Identification, Shuffled frog Leaping Algorithm (SFLA), TSK-type neuro-fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773514 Integral Domains and Their Algebras: Topological Aspects
Authors: Shai Sarussi
Abstract:
Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. Thus, the algebraic structure of W can be viewed from the point of view of topology. It is shown that every nonempty open subset of W has a maximal element in it, which is also a maximal element of W. Moreover, a supremum of an irreducible subset of W always exists. As a notable connection with valuation theory, one considers the case in which S is a valuation domain and A is an algebraic field extension of F; if S is indecomposed in A, then W is an irreducible topological space, and W contains a greatest element.Keywords: Algebras over integral domains, Alexandroff topology, valuation domains, integral domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507513 A Cross-Layer Approach for Cooperative MIMO Multi-hop Wireless Sensor Networks
Authors: Jain-Shing Liu
Abstract:
In this work, we study the problem of determining the minimum scheduling length that can satisfy end-to-end (ETE) traffic demand in scheduling-based multihop WSNs with cooperative multiple-input multiple-output (MIMO) transmission scheme. Specifically, we present a cross-layer formulation for the joint routing, scheduling and stream control problem by incorporating various power and rate adaptation schemes, and taking into account an antenna beam pattern model and the signal-to-interference-and-noise (SINR) constraint at the receiver. In the context, we also propose column generation (CG) solutions to get rid of the complexity requiring the enumeration of all possible sets of scheduling links.Keywords: Wireless Sensor Networks, Cross-Layer Design, CooperativeMIMO System, Column Generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650512 Loss Analysis of Half Bridge DC-DC Converters in High-Current and Low-Voltage Applications
Authors: A. Faruk Bakan, İsmail Aksoy, Nihan Altintaş
Abstract:
In this paper, half bridge DC-DC converters with transformer isolation presented in the literature are analyzed for highcurrent and low-voltage applications under the same operation conditions, and compared in terms of losses and efficiency. The conventional and improved half-bridge DC-DC converters are simulated, and current and voltage waveforms are obtained for input voltage Vdc=500V, output current IO=450A, output voltage VO=38V and switching frequency fS=20kHz. IGBTs are used as power semiconductor switches. The power losses of the semiconductor devices are calculated from current and voltage waveforms. From simulation results, it is seen that the capacitor switched half bridge converter has the best efficiency value, and can be preferred at high power and high frequency applications.Keywords: Isolated half bridge DC-DC converter, high-current low-voltage applications, soft switching, high efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5178511 Heuristic Continuous-time Associative Memories
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
In this paper, a novel associative memory model will be proposed and applied to memory retrievals based on the conventional continuous time model. The conventional model presents memory capacity is very low and retrieval process easily converges to an equilibrium state which is very different from the stored patterns. Genetic Algorithms is well-known with the capability of global optimal search escaping local optimum on progress to reach a global optimum. Based on the well-known idea of Genetic Algorithms, this work proposes a heuristic rule to make a mutation when the state of the network is trapped in a spurious memory. The proposal heuristic associative memory show the stored capacity does not depend on the number of stored patterns and the retrieval ability is up to ~ 1.Keywords: Artificial Intelligent, Soft Computing, NeuralNetworks, Genetic Algorithms, Hopfield Neural Networks, andAssociative Memories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402510 Emotional, Behavioural and Social Development: Modality of Hierarchy of Needs in Supporting Parents with Special Needs
Authors: Fadzilah Abdul Rahman
Abstract:
Emotional development is developed between the parents and their child. Behavioural development is also developed between the parents and their child. Social Development is how parents can help their special needs child to adapt to society and to face challenges. In promoting a lifelong learning mindset, enhancing skill sets and readiness to face challenges, parents would be able to counter balance these challenges during their care giving process and better manage their expectations through understanding the hierarchy of needs modality towards a positive attitude, and in turn, improve their quality of life and participation in society. This paper aims to demonstrate how the hierarchy of needs can be applied in various situations of caregiving for parents with a special needs child.
Keywords: Hierarchy of needs, parents, special needs, care-giving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290509 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors
Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci
Abstract:
This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278508 A Type-2 Fuzzy Model for Link Prediction in Social Network
Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi
Abstract:
Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570507 Exponential Particle Swarm Optimization Approach for Improving Data Clustering
Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi
Abstract:
In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.Keywords: Particle swarm optimization, data clustering, exponential PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690506 Characterization of Lubricity of Mucins at Polymeric Surfaces for Biomedical Applications
Authors: Seunghwan Lee
Abstract:
The lubricating properties of commercially available mucins originating from different animal organs, namely bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM), have been characterized at polymeric surfaces for biomedical applications. Atomic force microscopy (AFM) and pin-on-disk tribometry have been employed for tribological studies at nanoscale and macroscale contacts, respectively. Polystyrene (PS) was employed to represent ‘rigid’ contacts, whereas poly(dimethylsiloxane) (PDMS) was employed to represent ‘soft contacts’. To understand the lubricating properties of mucins in correlation with the coverage on surfaces, adsorption properties of mucins onto the polymeric substrates have been characterized by means of optical waveguide light-mode spectroscopy (OWLS). Both mucins showed facile adsorption onto both polymeric substrates, but the lubricity was highly dependent upon the pH change between 2 and 7.Keywords: Bovine submaxillary mucin (BSM), Porcine Gastric Mucin (PGM), lubricity, biomedical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359505 Determination of the Quality of the Machined Surface Using Fuzzy Logic
Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović
Abstract:
This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.
Keywords: Metal machining, surface roughness, fuzzy logic, process modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691504 Subjective Assessment about Super Resolution Image Resolution
Authors: Seiichi Gohshi, Hiroyuki Sekiguchi, Yoshiyasu Shimizu, Takeshi Ikenaga
Abstract:
Super resolution (SR) technologies are now being applied to video to improve resolution. Some TV sets are now equipped with SR functions. However, it is not known if super resolution image reconstruction (SRR) for TV really works or not. Super resolution with non-linear signal processing (SRNL) has recently been proposed. SRR and SRNL are the only methods for processing video signals in real time. The results from subjective assessments of SSR and SRNL are described in this paper. SRR video was produced in simulations with quarter precision motion vectors and 100 iterations. These are ideal conditions for SRR. We found that the image quality of SRNL is better than that of SRR even though SRR was processed under ideal conditions.Keywords: Super Resolution Image Reconstruction, Super Resolution with Non-Linear Signal Processing, Subjective Assessment, Image Quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695503 A PSO-based End-Member Selection Method for Spectral Unmixing of Multispectral Satellite Images
Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman
Abstract:
An end-member selection method for spectral unmixing that is based on Particle Swarm Optimization (PSO) is developed in this paper. The algorithm uses the K-means clustering algorithm and a method of dynamic selection of end-members subsets to find the appropriate set of end-members for a given set of multispectral images. The proposed algorithm has been successfully applied to test image sets from various platforms such as LANDSAT 5 MSS and NOAA's AVHRR. The experimental results of the proposed algorithm are encouraging. The influence of different values of the algorithm control parameters on performance is studied. Furthermore, the performance of different versions of PSO is also investigated.
Keywords: End-members selection, multispectral satellite imagery, particle swarm optimization, spectral unmixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099502 FEM Analysis of the Interaction between a Piezoresistive Tactile Sensor and Biological Tissues
Authors: Ahmad Atieh, Masoud Kalantari, Roozbeh Ahmadi, Javad Dargahi, Muthukumaran Packirisamy, Mehrdad Hosseini Zadeh
Abstract:
The present paper presents a finite element model and analysis for the interaction between a piezoresistive tactile sensor and biological tissues. The tactile sensor is proposed for use in minimally invasive surgery to deliver tactile information of biological tissues to surgeons. The proposed sensor measures the relative hardness of soft contact objects as well as the contact force. Silicone rubbers were used as the phantom of biological tissues. Finite element analysis of the silicone rubbers and the mechanical structure of the sensor were performed using COMSOL Multiphysics (v3.4) environment. The simulation results verify the capability of the sensor to be used to differentiate between different kinds of silicone rubber materials.Keywords: finite element analysis, minimally invasive surgery, Neo-Hookean hyperelastic materials, tactile sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2762501 K-Means for Spherical Clusters with Large Variance in Sizes
Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Data clustering is an important data exploration technique with many applications in data mining. The k-means algorithm is well known for its efficiency in clustering large data sets. However, this algorithm is suitable for spherical shaped clusters of similar sizes and densities. The quality of the resulting clusters decreases when the data set contains spherical shaped with large variance in sizes. In this paper, we introduce a competent procedure to overcome this problem. The proposed method is based on shifting the center of the large cluster toward the small cluster, and recomputing the membership of small cluster points, the experimental results reveal that the proposed algorithm produces satisfactory results.Keywords: K-Means, Data Clustering, Cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281500 Discovering Semantic Links Between Synonyms, Hyponyms and Hypernyms
Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo
Abstract:
This proposal aims for semantic enrichment between glossaries using the Simple Knowledge Organization System (SKOS) vocabulary to discover synonyms, hyponyms and hyperonyms semiautomatically, in Brazilian Portuguese, generating new semantic relationships based on WordNet. To evaluate the quality of this proposed model, experiments were performed by the use of two sets containing new relations, being one generated automatically and the other manually mapped by the domain expert. The applied evaluation metrics were precision, recall, f-score, and confidence interval. The results obtained demonstrate that the applied method in the field of Oil Production and Extraction (E&P) is effective, which suggests that it can be used to improve the quality of terminological mappings. The procedure, although adding complexity in its elaboration, can be reproduced in others domains.Keywords: Ontology matching, mapping enrichment, semantic web, linked data, SKOS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777499 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes
Authors: Z. Nougrara
Abstract:
In this paper we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We therefore have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.Keywords: Satellite image, road network, nodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697498 A Review of Quality Relationship between IT Processes, IT Products and IT Services
Authors: Whee Yen Wong, Chan Wai Lee, Kim Yeow Tshai
Abstract:
Producing IT products/services required carefully designed. IT development process is intangible and labour intensive. Making optimal use of available resources, both soft (knowledge, skill-set etc.) and hard (computer system, ancillary equipment etc.), is vital if IT development is to achieve sensible economical advantages. Apart from the norm of Project Life Cycle and System Development Life Cycle (SDLC), there is an urgent need to establish a general yet widely acceptable guideline on the most effective and efficient way to precede an IT project in the broader view of Product Life Cycle. The current paper proposes such a framework with two major areas of concern: (1) an integration of IT Products and IT Services within an existing IT Process architecture and; (2) how IT Product and IT Services are built into the framework of Product Life Cycle, Project Life Cycle and SDLC.Keywords: Mapping of Quality Relationship, IT Processes/IT Products/IT Services, Product Life Cycle, System Development Life Cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171497 Improving RBF Networks Classification Performance by using K-Harmonic Means
Authors: Z. Zainuddin, W. K. Lye
Abstract:
In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.Keywords: Neural networks, Radial basis functions, Clusteringmethod, K-harmonic means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850496 Frame and Burst Acquisition in TDMA Satellite Communication Networks with Transponder Hopping
Authors: Vitalice K. Oduol, C. Ardil
Abstract:
The paper presents frame and burst acquisition in a satellite communication network based on time division multiple access (TDMA) in which the transmissions may be carried on different transponders. A unique word pattern is used for the acquisition process. The search for the frame is aided by soft-decision of QPSK modulated signals in an additive white Gaussian channel. Results show that when the false alarm rate is low the probability of detection is also low, and the acquisition time is long. Conversely when the false alarm rate is high, the probability of detection is also high and the acquisition time is short. Thus the system operators can trade high false alarm rates for high detection probabilities and shorter acquisition times.
Keywords: burst acquisition, burst time plan, frame acquisition, satellite access, satellite TDMA, unique word detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9157495 An Implicit Region-Based Deformable Model with Local Segmentation Applied to Weld Defects Extraction
Authors: Y. Boutiche, N. Ramou, M. Ben Gharsallah
Abstract:
This paper is devoted to present and discuss a model that allows a local segmentation by using statistical information of a given image. It is based on Chan-Vese model, curve evolution, partial differential equations and binary level sets method. The proposed model uses the piecewise constant approximation of Chan-Vese model to compute Signed Pressure Force (SPF) function, this one attracts the curve to the true object(s)-s boundaries. The implemented model is used to extract weld defects from weld radiographic images in the aim to calculate the perimeter and surfaces of those weld defects; encouraged resultants are obtained on synthetic and real radiographic images.
Keywords: Active contour, Chan-Vese Model, local segmentation, weld radiographic images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505494 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images
Authors: I. Oloyede
Abstract:
The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871