**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**32731

##### Integral Domains and Their Algebras: Topological Aspects

**Authors:**
Shai Sarussi

**Abstract:**

**Keywords:**
Algebras over integral domains,
Alexandroff topology,
valuation domains,
integral domains.

**References:**

[1] P. Alexandroff, Diskrete R¨aume, Mat. Sb. (N.S.) 2 (1937), 501-518.

[2] D. E. Dobbs and M. Fontana, Kronecker function rings and abstract Riemann surfaces, J. Algebra 99 (1986), 263-274.

[3] D. E. Dobbs, R. Fedder, and M. Fontana, Abstract Riemann surfaces of integral domains and spectral spaces, Ann. Mat. Pura Appl. 148 (1987), 101115.

[4] O. Endler, Valuation Theory. Springer-Verlag, New York, 1972.

[5] C. A. Finocchiaro, M. Fontana, and K. A. Loper, The constructible topology on spaces of valuation domains, Trans. Am. Math. Soc. 365 (2013), 6199-6216

[6] R. Huber and M. Knebusch, On valuation spectra, in “Recent advances in real algebraic geometry and quadratic forms: proceedings of the RAGSQUAD year”, Berkeley, 1990-1991, Contemp. Math. 155, Amer. Math. Soc. Providence RI (1994), 167-206.

[7] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60.

[8] F. V. Kuhlmann, Places of algebraic fields in arbitrary characteristic, Advances Math. 188 (2004), 399-424.

[9] S. Sarussi, Quasi-valuations extending a valuation, J. Algebra 372 (2012), 318-364.

[10] S. Sarussi, Quasi-valuations – topology and the weak approximation theorem, Valuation theory in interaction, EMS Series of Congress Reports, EMS Publishing House, 2014, pp. 464-473.

[11] S. Sarussi, Totally ordered sets and the prime spectra of rings, Comm. Algebra, (2017) 45:1, 411-419, DOI: 10.1080/00927872.2016.1175583.

[12] S. Sarussi, Quasi-valuations and algebras over valuation domains, Comm. Algebra, (2019), DOI: 10.1080/00927872.2018.1522322.

[13] S. Sarussi, Extensions of integral domains and quasi-valuations, Comm. Algebra, (2019), DOI: 10.1080/00927872.2019.1677695

[14] S. Sarussi, Alexandroff Topology of Algebras Over an Integral Domain, Mediterr. J. Math., (2020), https://doi.org/10.1007/s00009-020-1502-z 1660-5446/20/020001-17

[15] M. H. Stone, The Theory of Representation for Boolean Algebras, Trans. Amer. Math. Soc. 40 (1936) 37-111.

[16] M. H. Stone, Topological representations of distributive lattices and Brouwerian logics, ˇCasopis Peˇst. Mat. Fys. 67 (1937), 1-25.

[17] O. Zariski, The compactness of the Riemann manifold of an abstract field of algebraic functions, Bull. Amer. Math. Soc. 50, (1944), 683-691.