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Abstract—Let S be an integral domain with field of fractions F
and let A be an F -algebra. An S-subalgebra R of A is called S-nice
if R∩F = S and the localization of R with respect to S \{0} is A.
Denoting by W the set of all S-nice subalgebras of A, and defining
a notion of open sets on W, one can view W as a T0-Alexandroff
space. Thus, the algebraic structure of W can be viewed from the
point of view of topology. It is shown that every nonempty open
subset of W has a maximal element in it, which is also a maximal
element of W. Moreover, a supremum of an irreducible subset of
W always exists. As a notable connection with valuation theory, one
considers the case in which S is a valuation domain and A is an
algebraic field extension of F ; if S is indecomposed in A, then W is
an irreducible topological space, and W contains a greatest element.

Keywords—Algebras over integral domains, Alexandroff topology,
valuation domains, integral domains.

I. INTRODUCTION

THE study of topological spaces of algebraic objects such

as rings or ideals has proven to be very useful in the last

century. The first one to conduct such a research was Stone

(cf. [15], [16]), who studied topological spaces of prime ideals

in the context of distributive lattices and Boolean algebras.

Later, important researchers followed Stone: Zariski studied

topological spaces of valuation domains (what is now known

as the Zariski-Riemann space, cf. [17]); Zariski also studied

topological spaces of prime ideals of commutative rings with

unity; Hochster (cf. [7]) studied the notion of a spectral

space using purely topological properties, and showed that

those properties characterize the topological spaces that are

homeomorphic to the prime spectrum of a commutative ring

with unity, endowed with the Zariski topology; many more

researchers continued the study of such and similar spaces. As

a notable such study, we note that it was proved in 1986 (cf.

[2]) that the Zariski-Riemann space is in fact a spectral space;

later, this fact was proved again using different approaches

(see [3], [5], [6], and [8]).
In this paper, as the title suggests, we discuss topological

(and algebraic) aspects of algebras over an integral domain;

the topological aspects we discuss are with respect to an

Alexandroff topology. The purpose of this paper is to present

a short view on such spaces, which in a way, is broader than

the points of view that were given in [13] and [14]; additional

aspects of these spaces are also presented.
In this paper the symbol ⊂ means proper inclusion, and the

symbol ⊆ means inclusion or equality.
The motivation for studying algebras over an integral

domain initiated with the study of quasi-valuations. A

quasi-valuation is a generalization of the notion of valuation.
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We recall that a valuation on a field F is a function

v : F → Γ ∪ {∞},
where Γ is a totally ordered abelian group, to which we adjoin

an element ∞, which is greater than all elements of Γ, and v
satisfies the following conditions:

(A1) v(x) �= ∞ iff x �= 0, for all x ∈ F ;

(A2) v(xy) = v(x) + v(y) for all x, y ∈ F ;

(A3) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ F .

Recall (cf. [9, Introduction]) that a quasi-valuation on a ring

R is a function

w : R → M ∪ {∞},
where M is a totally ordered abelian monoid, to which we

adjoin an element ∞, which is greater than all elements of

M , and where w satisfies the following properties:

(B1) w(0) = ∞;

(B2) w(xy) ≥ w(x) + w(y) for all x, y ∈ R;

(B3) w(x+ y) ≥ min{w(x), w(y)} for all x, y ∈ R.

Let v be a valuation on a field F ; the valuation domain of

v is the integral domain ,whose field of fractions is F , defined

by

Ov = {x ∈ F | v(x) ≥ 0}.
Likewise, let w be a quasi-valuation on a ring R; the

quasi-valuation ring is the subring of R defined by

Ow = {x ∈ R | w(x) ≥ 0}.
In [9] the theory of quasi-valuations that extend a given

valuation was developed. Explicitly, for a given valuation v
on a field F , a corresponding valuation domain Ov , and a

finite field extension E/F , we studied quasi-valuations on E
extending v on F . We showed that every such quasi-valuation

is dominated by some valuation extending v; more precisely,

we showed that there exists a valuation u on E extending v
on F such that for every x ∈ E, we have w(x) ≤ u(x) (see

[9, Section 6]). In addition, a one-to-one correspondence was

obtained between exponential quasi-valuations and integrally

closed quasi-valuation rings. The most important result in

[9] was the construction of the filter quasi-valuation, for any

algebra over a valuation domain. We showed that if A is

an F -algebra and R is an Ov-subalgebra of A lying over

Ov then there exists a quasi-valuation on R ⊗Ov
F (called

the filter quasi-valuation) extending v on F such that the

quasi-valuation ring is equal to R (under the identification

of R with R ⊗Ov
1). In particular, if R is an Ov-subalgebra

of A lying over Ov such that RF = A then there exists a

quasi-valuation on A extending v on F .
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Some of the notable properties concerning a valuation

domain and an algebra over it are the connections between

their prime spectra; these connections are studied via the

classical lifting conditions of prime ideals.

We recall now these five lifting conditions. We assume that

R is an algebra over S. For subsets I ⊆ R and J ⊆ S we say

that I is lying over J if

J = {s ∈ S | s · 1R ∈ I}.
By abuse of notation, we write J = I ∩ S (even when R is

not faithful over S).

We say that R satisfies LO (lying over) over S if for all

P ∈ Spec(S) there exists Q ∈ Spec(R) lying over P .

We say that R satisfies GD (going down) over S if for any

P1 ⊂ P2 in Spec(S) and for every Q2 ∈ Spec(R) lying over

P2, there exists Q1 ⊂ Q2 in Spec(R) lying over P1.

We say that R satisfies GU (going up) over S if for any

P1 ⊂ P2 in Spec(S) and for every Q1 ∈ Spec(R) lying over

P1, there exists Q1 ⊂ Q2 in Spec(R) lying over P2.

We say that R satisfies SGB (strong going between) over S
if for any P1 ⊂ P2 ⊂ P3 in Spec(S) and for every Q1 ⊂ Q3

in Spec(R) such that Q1 is lying over P1 and Q3 is lying over

P3, there exists Q2, with Q1 ⊂ Q2 ⊂ Q3 in Spec(R), lying

over P2.

We say that R satisfies INC (incomparability) over S if

whenever Q1 ⊂ Q2 in Spec(R), we have Q1 ∩ S ⊂ Q2 ∩ S.

Another (more general) property that was considered in [12]

is the GGD property. It is defined as follows: We say that R
satisfies GGD (generalized going down) over S if, for every

chain of prime ideals D of S with a final element P0 and Q0 a

prime ideal of R lying over P0, there exists a chain of prime

ideals C of R covering D (namely, for every P ∈ D there

exists Q ∈ C lying over P ), whose final element is Q0.

In [12, Section 2] we studied the notions LO and INC with

respect to algebras over a valuation domain. In [12, Theorem

2.2] we gave sufficient conditions (in terms of the algebra R
as well as in terms of the filter quasi-valuation defined on it)

for an Ov-algebra to satisfy LO over Ov; we also presented a

necessary and sufficient condition for an Ov-algebra to satisfy

LO over Ov . In [12, Theorem 2.6] it was shown that if R is

a torsion-free algebra over Ov such that

[R⊗Ov
F : F ] < ∞,

then R satisfies INC over Ov; we also showed that one cannot

omit any of these assumptions. Using INC, we showed that

the number of prime ideals in R lying over a given prime

ideal in Ov is less than or equal to the dimension of R⊗Ov
F

over F . In particular, we got an upper bound on the size of

the prime spectrum of R. Then, combining the properties LO

and INC, we obtained in [12, Theorem 2.13] an upper and a

lower bound on the size of the prime spectrum of R (in terms

of the Krull dimension of Ov).

In [12, Proposition 3.2] we proved that if R is a torsion-free

algebra over Ov then R satisfies GD over Ov . It is easy to

see that not every algebra over Ov satisfies GD; however, the

torsion-free assumption is not a necessary condition for the

GD property, as shown in [12, Example 3.5]. We also proved

(cf. [12, Theorem 3.8]) that any algebra over a commutative

valuation ring satisfies SGB over it; and deduced that a

torsion-free algebra over Ov satisfies GGD (generalized going

down) over Ov (cf. [12, Corollary 3.9]).

In [12, Section 4] we discussed the property GU. We proved

in [12, Theorem 4.12] that if R is a right (or left) Artinian

algebra over Ov and w is a v-quasi-valuation on R such

that w(1R) = 0, w(x) �= ∞ for all nonzero x ∈ R, and

Mw (the value monoid of the quasi-valuation) is cancellative,

then Ow satisfies GU over Ov . We also noted that the GU

property is not necessarily valid without the assumption on

the quasi-valuation; in fact, in a subsequent paper we present

equivalent conditions for an Ov subalgebra of E to satisfy GU

over Ov , whenever E is a finite dimensional field extension

of F . Moreover, if R is a torsion-free algebra over Ov and

finitely generated as a module over Ov , we constructed in

[12, Theorem 4.29] a v-quasi-valuation w on R such that

w(1R) = 0, w(x) �= ∞ for all nonzero x ∈ R, the value

monoid of w is equal to the value group of v, and Ow = R;

for the definition of a v-quasi-valuation see [12, Definition

4.1]. So, in [9] and in some parts of [12] we assumed

that a quasi-valuation extending the valuation v exists (or

equivalently by [9, Theorem 9.19], we assumed the existence

of an appropriate Ov-algebra). In [13] we partially answered

the following natural and central question: when does such

a quasi-valuation exist? We showed that quasi-valuations

extending a valuation v on F exists on any finite dimensional

F -algebras, and even more generally, on any F -algebra having

an Ov-stable basis. In fact, we proved a more general result

and applied it to quasi-valuation theory. We shall discuss this

theorem in more detail in Section II. For more information

on quasi-valuations see [10] and [11]. So, as explained above,

there are some interesting connections between a valuation

domain and an algebra over it; in particular, with respect to

their prime spectra. It can be shown that some connections

can be generalized to the study of arbitrary algebras over

an integral domain; In fact, some interesting properties of

algebras over an integral domain can be deduced from the

study of quasi-valuation rings over a valuation domain.

We recall that a topological space whose set of open sets is

closed under arbitrary intersections is called an Alexandroff

space, after P. Alexandroff who first introduced such

topological spaces in his paper [1] from 1937. Equivalently,

A topological space is called an Alexandroff space if every

element has a minimal open set containing it.

Let (T, τ) be a topological space. For X ⊆ T we denote

by clX the closure of X . It is well known, that if one defines

x ≤τ y whenever x ∈ cl{y}, then ≤τ is a quasi-order; i.e., a

reflexive and transitive relation. ≤τ is called the specialization

order. Recall that (T, τ) is called T0 if for every two distinct

elements in T , there exists an open set containing one of them

but not the other. It is known that (T, τ) is T0 if and only if

≤τ is a partial order.

We review now some of the common definitions we use

from order theory.

Let P be a set with a preorder ≤. Let M ⊆ P . We say that

a ∈ M is minimal (resp. maximal) in M if for all x ∈ M ,

x ≤ a (resp. x ≥ a) implies x = a. We say that a ∈ M is

a smallest (resp. greatest) element in M if for all x ∈ M we
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have a ≤ x (resp. a ≥ x). As mentioned above, if the relation

≤ is also antisymmetric then it is called a partial order and P
is called a partially ordered set, or a poset. Let L ⊆ P . We

say that a ∈ P is a lower (resp. upper) bound of L if a ≤ x
(resp. a ≥ x) for all x ∈ L. If the set of lower (resp. upper)

bounds of L has a unique greatest (resp. smallest) element,

this element is called the greatest lower (resp. least upper)

bound of L, and is denoted by infL (resp. supL). We say that

L is a lower set if

L = {y ∈ P | y ≤ x for some x ∈ L}.
We say that L is an upper set if

L = {y ∈ P | y ≥ x for some x ∈ L}.

II. THE TOPOLOGICAL SPACE W

The basic framework of this paper is as follows: let S be

an integral domain with field of fractions F and let A be an

F -algebra. An S-subalgebra R of A is called S-nice if R is

lying over S and the localization of R with respect to S \ {0}
is A. We denote by W the set of all S-nice subalgebras of A.

The notion of an S-stable basis is also important to our study:

let B be a basis of A over F . We say that B is S-stable if

there exists a basis C of A over F such that for all c ∈ C and

b ∈ B, one has

cb ∈
∑

y∈B

Sy.

An important observation regarding S-stable bases is the

fact that whenever A is finite dimensional over F , there exists

an S-stable basis of A over F ; more precisely, we have the

following proposition.

Proposition 1. (cf. [13, Proposition 3.12]) If A is finite
dimensional over F , then every basis of A over F is S-stable.

It is worth mentioning that it is still not known whether an

S-stable basis of A over F exists for an arbitrary algebra A
over F . The existence of an S-stable basis is important to our

study due to the following existence theorem.

Theorem 1. (cf. [13, Theorem 3.14]) If there exists an
S-stable basis of A over F , then there exists an S-nice
subalgebra of A.

The property “going-down” is well-known as part of the

classical lifting conditions of prime ideals. The following

Lemma is a going-down lemma for S-nice subalgebras.

Lemma 1. (cf. [13, Lemma 3.20]) Let S1 ⊆ S2 be integral
domains with field of fractions F such that S2 �= F . Assume
that there exists an S1-stable basis of A over F . Let R be
an S2-nice subalgebra of A. Then there exists an S1-nice
subalgebra of A, which is contained in R.

The idea of the proof is to consider an S1-nice subalgebra

of A, say R1 (there exists such an algebra by the existence

theorem). Then, the intersection of R1 and R is the required

S1-nice subalgebra of A.

One can take S1 = S2 in the previous Lemma, and

conclude the existence of an infinite decreasing chain of S-nice

subalgebras of A; more precisely, we have the following

proposition.

Proposition 2. (cf. [13, Proposition 3.21]) Assume that there
exists an S-stable basis of A over F . Let R be an S-nice
subalgebra of A. Then there exists an infinite decreasing chain
of S-nice subalgebras of A starting from R. In particular, a
minimal S-nice subalgebra of A does not exist.

We conclude,

Proposition 3. If A is finite dimensional over F then W is
infinite.

Proof: By Proposition 1 and Proposition 2.

We assume throughout this paper that W is not empty.

For every M ⊆ A we denote by V (M) the set of all S-nice

subalgebras of A containing M . It is easy to see that V ({0}) =
S, V (F ) = ∅, and for every M1,M2 ⊆ A, we have

V (M1 ∪M2) = V (M1) ∩ V (M2).

Thus, the set B={V (M)}M⊆A is a basis for a topology on S.

Moreover, for every set {Mi}i∈I of subsets of A, we have

V (∪i∈IMi) = ∩i∈IV (Mi).

Thus, W is an Alexandroff topological space with respect to

the topology whose basis is B.

It is not difficult to see that, for R ∈ W, the minimal open

set containing R is actually V (R). Also, for R1, R2 ∈ W, the

specialization order on W is defined by

R1 ≤ R2 whenever R1 ∈ cl{R2};
i.e., every open set containing R1 also contains R2; since W
is Alexandroff,

R1 ∈ cl{R2} iff R2 ∈ V (R1),

i.e., R1 ⊆ R2. In other words, the specialization order on W is

the order of containment; thus, in particular, the topology on

W is T0. Moreover, as in any Alexandroff topological space,

U ⊆ W is open iff U is an upper set of W; namely,

U = {R ∈ W | R1 ⊆ R for some R1 ∈ U}.
In general order theory, upper sets do not have to contain

a maximal element; however, in W we have the following

theorem, which is a generalization of [14, Lemma 2.6].

Theorem 2. Let U be a nonempty open subset of W. Then
there exists a maximal element in U , which is also a maximal
element of W. In fact, for every R ∈ U , there exists a maximal
R0 ∈ U containing R.

Proof: It is enough to prove the second assertion. So, let

R ∈ U , and consider V (R), which is obviously contained in

U , with the specialization order. Let C be a nonempty chain

of elements in V (R). Consider

R1 = ∪R∈CR;

since C is a chain, R1 is an S-nice subalgebra of A. Clearly,

R1 ∈ V (R). Hence, every nonempty chain in V (R) has an
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upper bound. Thus, by Zorn’s Lemma, V (R) has a maximal

element; in particular, this maximal element contains R. Since

V (R) is an upper set, this maximal element is also a maximal

element of U and a maximal element of W.

Remark 1. In view of the previous Theorem, note that every

subset of the set of all maximal elements of W is an open

subset of W.

Recall that a topological space is called Noetherian if it

satisfies the descending chain condition for closed subsets. We

have the following observation.

Proposition 4. If A is finite dimensional over F , then W is
not Noetherian.

Proof: By Proposition 1 every basis of A over F is

S-stable; A obviously contains a basis over F . Now, let

R ∈ W. By Proposition 2 there exists an infinite decreasing

chain, say ω, of S-nice subalgebras of A starting from R. By

considering the infinite decreasing chain of the closures of the

algebras in ω, we conclude that W is not Noetherian.

Recall that a topological space is called Hausdorff if for any

two points x, y in it, there exist two disjoint open sets U and

V such that U contains x and V contains y. It is well-known

that an Hausdorff topological space which is also Alexandroff

must be finite. Thus, in view of Proposition 3, we have,

Lemma 2. If A is finite dimensional over F , then W is not
Hausdorff.

In fact, we can say even more. Without any assumptions on

the dimension of A over F , whenever R1 ⊂ R2 in W, it is

clear that R2 ∈ V (R1). Since V (R1) is the smallest open set

containing R1, there exists no open set containing R1 and not

containing R2.
The following Lemma is important for the understanding of

irreducible subsets of W.

Lemma 3. Let I be an irreducible subset of W and let
R1, R2 ∈ I . Then there exists R3 ∈ I such that R1∪R2 ⊆ R3.

Proof: Assume to the contrary that there exists no such

R3; in particular,

R1 � R2 and R2 � R1.

We consider the closed sets in W not containing R1, and let

C1 denote the union of all those sets. Similarly, consider the

closed sets in W not containing R2, and let C2 denote the

union of all those sets. Since W is Alexandroff, both C1 and

C2 are closed. Then, by our assumption,

I ⊆ C1 ∪ C2.

However, since R1 /∈ C1 and R2 /∈ C2, we have

I � C1 and I � C2,

a contradiction.

In [14, Theorem 2.13] it is proved that an irreducible subset

of W has a supremum in W. Using Lemma 3 we obtain a

simpler and more informative proof for the theorem.

Theorem 3. Let I be an irreducible subset of W. Then ∪R∈IR
is an S-nice subalgebra of A; in particular,

supI = ∪R∈IR.

Proof: By Lemma 3, it is clear that ∪R∈IR is an

S-subalgebra of A. It is easy to conclude now that ∪R∈IR
is S-nice.

Let K be a field and let L be an algebraic field extension

of K. Let T be a valuation domain of K. Recall (cf. [4,

Corollary 13.5]) that T is indecomposed in L if there exists a

unique valuation domain of L lying over T . Moreover, by [4,

Corollary 13.7]), whenever the separable degree of K over L
is finite, the number of valuation domains of L that are lying

over T is less than or equal to the separable degree of K over

L.

Now, whenever S is a valuation domain of F , and A is

an algebraic field extension of F , it is well known (cf. [4,

Proposition 13.2]) that there exists a valuation domain of A
lying over S; in particular, there exists an S-nice subalgebra

of A. Moreover, every such valuation domain of A is a

maximal S-nice subalgebra of A and vice versa. Indeed, any

subalgebra of A containing such a valuation domain lies over

a proper overring of S, and every S-nice subalgebra of A has a

valuation domain lying over S that contains it, by [4, Theorem

9.11].

In [14, Theorem 2.15] the irreducible open subsets of W
are characterized, among other characterizations, as the open

subsets that have a greatest element. Thus, in view of this

characterization we have the following observation.

Proposition 5. Assume that S is a valuation domain of F and
A is an algebraic field extension of F . If S is indecomposed
in A, then W is an irreducible Alexandroff topological space.

In [14, Proposition 2.16] the irreducible components of W
are characterized as the closed sets of the form cl{R}, where

R is a maximal element of W.

Finally, by [4, Corollary 13.7] and the characterization of

the irreducible components mentioned above, we conclude the

following generalization of the previous Proposition,

Corollary 1. Assume that S is a valuation domain of F and A
is an algebraic field extension of F . If the separable degree of
A over F is finite, then W contains finitely many irreducible
components.
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