Search results for: Social Network Analysis
11361 Survey on Arabic Sentiment Analysis in Twitter
Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb
Abstract:
Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.
Keywords: Big Data, Social Networks, Sentiment Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434811360 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network
Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima
Abstract:
Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.
Keywords: Wireless sensor network, mobile sensor node, relay of sensing data, virtual rail, residual energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175411359 A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System
Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha
Abstract:
This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes.
Keywords: Car parking monitoring, sensor node, wireless sensor network, network protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251711358 Analysis of Equal cost Adaptive Routing Algorithms using Connection-Oriented and Connectionless Protocols
Authors: ER. Yashpaul Singh, A. Swarup
Abstract:
This research paper evaluates and compares the performance of equal cost adaptive multi-path routing algorithms taking the transport protocols TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) using network simulator ns2 and concludes which one is better.Keywords: Multi-path routing algorithm, Datagram, Virtual Circuit, Throughput, Network services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149911357 Interdisciplinary Principles of Field-Like Coordination in the Case of Self-Organized Social Systems1
Authors: D. Plikynas, S. Masteika, A. Budrionis
Abstract:
This interdisciplinary research aims to distinguish universal scale-free and field-like fundamental principles of selforganization observable across many disciplines like computer science, neuroscience, microbiology, social science, etc. Based on these universal principles we provide basic premises and postulates for designing holistic social simulation models. We also introduce pervasive information field (PIF) concept, which serves as a simulation media for contextual information storage, dynamic distribution and organization in social complex networks. PIF concept specifically is targeted for field-like uncoupled and indirect interactions among social agents capable of affecting and perceiving broadcasted contextual information. Proposed approach is expressive enough to represent contextual broadcasted information in a form locally accessible and immediately usable by network agents. This paper gives some prospective vision how system-s resources (tangible and intangible) could be simulated as oscillating processes immersed in the all pervasive information field.
Keywords: field-based coordination, multi-agent systems, information-rich social networks, pervasive information field
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156611356 Margin-Based Feed-Forward Neural Network Classifiers
Authors: Han Xiao, Xiaoyan Zhu
Abstract:
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172511355 Issue Reorganization Using the Measure of Relevance
Authors: William Wong Xiu Shun, Yoonjin Hyun, Mingyu Kim, Seongi Choi, Namgyu Kim
Abstract:
The need to extract R&D keywords from issues and use them to retrieve R&D information is increasing rapidly. However, it is difficult to identify related issues or distinguish them. Although the similarity between issues cannot be identified, with an R&D lexicon, issues that always share the same R&D keywords can be determined. In detail, the R&D keywords that are associated with a particular issue imply the key technology elements that are needed to solve a particular issue. Furthermore, the relationship among issues that share the same R&D keywords can be shown in a more systematic way by clustering them according to keywords. Thus, sharing R&D results and reusing R&D technology can be facilitated. Indirectly, redundant investment in R&D can be reduced as the relevant R&D information can be shared among corresponding issues and the reusability of related R&D can be improved. Therefore, a methodology to cluster issues from the perspective of common R&D keywords is proposed to satisfy these demands.
Keywords: Clustering, Social Network Analysis, Text Mining, Topic Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203811354 Neural Network Controller for Mobile Robot Motion Control
Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic
Abstract:
In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 333211353 Risk Factors’ Analysis on Shanghai Carbon Trading
Authors: Zhaojun Wang, Zongdi Sun, Zhiyuan Liu
Abstract:
First of all, the carbon trading price and trading volume in Shanghai are transformed by Fourier transform, and the frequency response diagram is obtained. Then, the frequency response diagram is analyzed and the Blackman filter is designed. The Blackman filter is used to filter, and the carbon trading time domain and frequency response diagram are obtained. After wavelet analysis, the carbon trading data were processed; respectively, we got the average value for each 5 days, 10 days, 20 days, 30 days, and 60 days. Finally, the data are used as input of the Back Propagation Neural Network model for prediction.
Keywords: Shanghai carbon trading, carbon trading price, carbon trading volume, wavelet analysis, BP neural network model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97311352 Research on Hybrid Neural Network in Intrusion Detection System
Authors: Jianhua Wang, Yan Yu
Abstract:
This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.
Keywords: RBF, Elman, anomaly detection, misuse detection, hybrid neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232711351 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea
Authors: Soungwan Kim
Abstract:
This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.
Keywords: Vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131111350 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.
Keywords: Social Media, text mining, knowledge discovery, predictive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384911349 A Redundant Dynamic Host Configuration Protocol for Collaborating Embedded Systems
Authors: M. Schukat, M.P. Cullen, D. O'Beirne
Abstract:
This paper describes a UDP over IP based, server-oriented redundant host configuration protocol (RHCP) that can be used by collaborating embedded systems in an ad-hoc network to acquire a dynamic IP address. The service is provided by a single network device at a time and will be dynamically reassigned to one of the other network clients if the primary provider fails. The protocol also allows all participating clients to monitor the dynamic makeup of the network over time. So far the algorithm has been implemented and tested on an 8-bit embedded system architecture with a 10Mbit Ethernet interface.Keywords: Ad-Hoc Networks, Collaborating Embedded Systems, Dynamic Host Configuration, Redundancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156911348 Towards Security in Virtualization of SDN
Authors: Wanqing You, Kai Qian, Xi He, Ying Qian
Abstract:
In this paper, the potential security issues brought by the virtualization of a Software Defined Networks (SDN) would be analyzed. The virtualization of SDN is achieved by FlowVisor (FV). With FV, a physical network is divided into multiple isolated logical networks while the underlying resources are still shared by different slices (isolated logical networks). However, along with the benefits brought by network virtualization, it also presents some issues regarding security. By examining security issues existing in an OpenFlow network, which uses FlowVisor to slice it into multiple virtual networks, we hope we can get some significant results and also can get furtherdiscussions among the security of SDN virtualization.
Keywords: FlowVisor, Network virtualization, Potential threats, Possible solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216211347 Security Threat and Countermeasure on 3G Network
Authors: Dongwan Kang, Joohyung Oh, Chaetae Im
Abstract:
Recent communications environment significantly expands the mobile environment. The popularization of smartphones with various mobile services has emerged, and smartphone users are rapidly increasing. Because of these symptoms, existing wired environment in a variety of mobile traffic entering to mobile network has threatened the stability of the mobile network. Unlike traditional wired infrastructure, mobile networks has limited radio resources and signaling procedures for complex radio resource management. So these traffic is not a problem in wired networks but mobile networks, it can be a threat. In this paper, we analyze the security threats in mobile networks and provide direction to solve it.Keywords: 3G, Core Network Security, GTP, Mobile NetworkSecurity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213911346 3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor
Authors: Thomas Canhao Xu, Bo Yang, Alexander Wei Yin, Pasi Liljeberg, Hannu Tenhunen
Abstract:
With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.
Keywords: 3D integration, network-on-chip, memory-on-chip, DRAM, chip multiprocessor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244711345 Application of Artificial Neural Network for Predicting Maintainability Using Object-Oriented Metrics
Authors: K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra
Abstract:
Importance of software quality is increasing leading to development of new sophisticated techniques, which can be used in constructing models for predicting quality attributes. One such technique is Artificial Neural Network (ANN). This paper examined the application of ANN for software quality prediction using Object- Oriented (OO) metrics. Quality estimation includes estimating maintainability of software. The dependent variable in our study was maintenance effort. The independent variables were principal components of eight OO metrics. The results showed that the Mean Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we found that ANN method was useful in constructing software quality model.
Keywords: Software quality, Measurement, Metrics, Artificial neural network, Coupling, Cohesion, Inheritance, Principal component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257311344 Scientific Production on Lean Supply Chains Published in Journals Indexed by SCOPUS and Web of Science Databases: A Bibliometric Study
Authors: T. Botelho de Sousa, F. Raphael Cabral Furtado, O. Eduardo da Silva Ferri, A. Batista, W. Augusto Varella, C. Eduardo Pinto, J. Mimar Santa Cruz Yabarrena, S. Gibran Ruwer, F. Müller Guerrini, L. Adalberto Philippsen Júnior
Abstract:
Lean Supply Chain Management (LSCM) is an emerging research field in Operations Management (OM). As a strategic model that focuses on reduced cost and waste with fulfilling the needs of customers, LSCM attracts great interest among researchers and practitioners. The purpose of this paper is to present an overview of Lean Supply Chains literature, based on bibliometric analysis through 57 papers published in indexed journals by SCOPUS and/or Web of Science databases. The results indicate that the last three years (2015, 2016, and 2017) were the most productive on LSCM discussion, especially in Supply Chain Management and International Journal of Lean Six Sigma journals. India, USA, and UK are the most productive countries; nevertheless, cross-country studies by collaboration among researchers were detected, by social network analysis, as a research practice, appearing to play a more important role on LSCM studies. Despite existing limitation, such as limited indexed journal database, bibliometric analysis helps to enlighten ongoing efforts on LSCM researches, including most used technical procedures and collaboration network, showing important research gaps, especially, for development countries researchers.
Keywords: Lean supply chains, bibliometric study, SCOPUS, web of Science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94411343 Network Mobility Support in Content-Centric Internet
Authors: Zhiwei Yan, Jong-Hyouk Lee, Yong-Jin Park, Xiaodong Lee
Abstract:
In this paper, we analyze NEtwork MObility (NEMO) supporting problems in Content-Centric Networking (CCN), and propose the CCN-NEMO which can well support the deployment of the content-centric paradigm in large-scale mobile Internet. The CCN-NEMO extends the signaling message of the basic CCN protocol, to support the mobility discovery and fast trigger of Interest re-issuing during the network mobility. Besides, the Mobile Router (MR) is extended to optimize the content searching and relaying in the local subnet. These features can be employed by the nested NEMO to maximize the advantages of content retrieving with CCN. Based on the analysis, we compare the performance on handover latency between the basic CCN and our proposed CCN-NEMO. The results show that our scheme can facilitate the content-retrieving in the NEMO scenario with improved performance.
Keywords: CCN, handover, NEMO, mobility management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153511342 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG
Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan
Abstract:
Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.
Keywords: EEG, functional connectivity, graph theory, TFCMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250511341 A Model for Business Network Governance: Case Study in the Pharmaceutical Industry
Authors: Emil Crişan, Matthias Klumpp
Abstract:
This paper discusses the theory behind the existence of an idealistic model for business network governance and uses a clarifying case-study, containing governance structures and processes within a business network framework. The case study from a German pharmaceutical industry company complements existing literature by providing a comprehensive explanation of the relations between supply chains and business networks, and also between supply chain management and business network governance. Supply chains and supply chain management are only one side of the interorganizational relationships and ensure short-term performance, while real-world governance structures are needed for ensuring the long-term existence of a supply chain. Within this context, a comprehensive model for business governance is presented. An interesting finding from the case study is that multiple business network governance systems co-exist within the evaluated supply chain.
Keywords: Business network, pharmaceutical industry, supply chain governance, supply chain management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236311340 The Usage of Social Networks in Educational Context
Authors: Sacide Güzin Mazman, Yasemin Koçak Usluel
Abstract:
Possible advantages of technology in educational context required the defining boundaries of formal and informal learning. Increasing opportunity to ubiquitous learning by technological support has revealed a question of how to discover the potential of individuals in the spontaneous environments such as social networks. This seems to be related with the question of what purposes in social networks have been being used? Social networks provide various advantages in educational context as collaboration, knowledge sharing, common interests, active participation and reflective thinking. As a consequence of these, the purpose of this study is composed of proposing a new model that could determine factors which effect adoption of social network applications for usage in educational context. While developing a model proposal, the existing adoption and diffusion models have been reviewed and they are thought to be suitable on handling an original perspective instead of using completely other diffusion or acceptance models because of different natures of education from other organizations. In the proposed model; social factors, perceived ease of use, perceived usefulness and innovativeness are determined four direct constructs that effect adoption process. Facilitating conditions, image, subjective norms and community identity are incorporated to model as antecedents of these direct four constructs.Keywords: Adoption of innovation, educational context, social networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 387611339 Perceptions of Corporate Social Responsibility Concept in Greece
Authors: Grigoris Giannarakis, Nikolaos Litinas, Ioannis Theotokas
Abstract:
This study attempts to clarify major perspectives of Corporate Social Responsibility (CSR) in the Greek market related to companies that have sufficient CSR. An empirical analysis was undertaken, based on literature review and previous observations and surveys, in order to provide a general analysis of the CSR concept in Greece. The results of Accountability Rating institution were used in order to identify companies that adopt an integrated social responsibility approach. Companies that responded to the survey are both regional and international and belong to different industrial fields. Some of the main survey results reveal: multiple aspects for the CSR concept, weak consensus as regards the importance of stakeholders and benefits from the CSR implementation, the important role of CSR in the decision procedure and CSR practices concerning social issues that affect mostly company-s competitiveness. Sharing companies- experience could address common social issues through CSR best practices and develop new knowledge.
Keywords: Corporate Social Responsibility, Greece, Kendall's co-efficient of concordance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224111338 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method
Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi
Abstract:
Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.
Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229711337 Hopfield Network as Associative Memory with Multiple Reference Points
Authors: Domingo López-Rodríguez, Enrique Mérida-Casermeiro, Juan M. Ortiz-de-Lazcano-Lobato
Abstract:
Hopfield model of associative memory is studied in this work. In particular, two main problems that it possesses: the apparition of spurious patterns in the learning phase, implying the well-known effect of storing the opposite pattern, and the problem of its reduced capacity, meaning that it is not possible to store a great amount of patterns without increasing the error probability in the retrieving phase. In this paper, a method to avoid spurious patterns is presented and studied, and an explanation of the previously mentioned effect is given. Another technique to increase the capacity of a network is proposed here, based on the idea of using several reference points when storing patterns. It is studied in depth, and an explicit formula for the capacity of the network with this technique is provided.
Keywords: Associative memory, Hopfield network, network capacity, spurious patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 110811336 Neural Network Based Predictive DTC Algorithm for Induction Motors
Authors: N.Vahdatifar, Ss.Mortazavi, R.Kianinezhad
Abstract:
In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.Keywords: Neural Networks, Predictive DTC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139211335 Sensitivity Analysis in Power Systems Reliability Evaluation
Authors: A.R Alesaadi, M. Nafar, A.H. Gheisari
Abstract:
In this paper sensitivity analysis is performed for reliability evaluation of power systems. When examining the reliability of a system, it is useful to recognize how results change as component parameters are varied. This knowledge helps engineers to understand the impact of poor data, and gives insight on how reliability can be improved. For these reasons, a sensitivity analysis can be performed. Finally, a real network was used for testing the presented method.Keywords: sensitivity analysis, reliability evaluation, powersystems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227311334 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.
Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63711333 Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network
Authors: Sidhartha Panda, N.P.Padhy
Abstract:
Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.
Keywords: Wind turbine induction generator, distribution network, active and reactive power, wind speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244811332 Improving Multi-storey Building Sensor Network with an External Hub
Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis
Abstract:
Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.Keywords: Wireless sensor networks, radio propagation, building monitoring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551