Search results for: Moving human-object detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1929

Search results for: Moving human-object detection

1569 Tool Failure Detection Based on Statistical Analysis of Metal Cutting Acoustic Emission Signals

Authors: Othman Belgassim, Krzysztof Jemielniak

Abstract:

The analysis of Acoustic Emission (AE) signal generated from metal cutting processes has often approached statistically. This is due to the stochastic nature of the emission signal as a result of factors effecting the signal from its generation through transmission and sensing. Different techniques are applied in this manner, each of which is suitable for certain processes. In metal cutting where the emission generated by the deformation process is rather continuous, an appropriate method for analysing the AE signal based on the root mean square (RMS) of the signal is often used and is suitable for use with the conventional signal processing systems. The aim of this paper is to set a strategy in tool failure detection in turning processes via the statistic analysis of the AE generated from the cutting zone. The strategy is based on the investigation of the distribution moments of the AE signal at predetermined sampling. The skews and kurtosis of these distributions are the key elements in the detection. A normal (Gaussian) distribution has first been suggested then this was eliminated due to insufficiency. The so called Beta distribution was then considered, this has been used with an assumed β density function and has given promising results with regard to chipping and tool breakage detection.

Keywords: AE signal, skew, kurtosis, tool failure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
1568 Development of the Algorithm for Detecting Falls during Daily Activity using 2 Tri-Axial Accelerometers

Authors: Ahyoung Jeon, Geunchul Park, Jung-Hoon Ro, Gye-rok Geon

Abstract:

Falls are the primary cause of accidents in people over the age of 65, and frequently lead to serious injuries. Since the early detection of falls is an important step to alert and protect the aging population, a variety of research on detecting falls was carried out including the use of accelerators, gyroscopes and tilt sensors. In exiting studies, falls were detected using an accelerometer with errors. In this study, the proposed method for detecting falls was to use two accelerometers to reject wrong falls detection. As falls are accompanied by the acceleration of gravity and rotational motion, the falls in this study were detected by using the z-axial acceleration differences between two sites. The falls were detected by calculating the difference between the analyses of accelerometers placed on two different positions on the chest of the subject. The parameters of the maximum difference of accelerations (diff_Z) and the integration of accelerations in a defined region (Sum_diff_Z) were used to form the fall detection algorithm. The falls and the activities of daily living (ADL) could be distinguished by using the proposed parameters without errors in spite of the impact and the change in the positions of the accelerometers. By comparing each of the axial accelerations, the directions of falls and the condition of the subject afterwards could be determined.In this study, by using two accelerometers without errors attached to two sites to detect falls, the usefulness of the proposed fall detection algorithm parameters, diff_Z and Sum_diff_Z, were confirmed.

Keywords: Tri-axial accelerometer, fall detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
1567 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geo-Synthetic: Reinforced Earth Beds under Moving Load

Authors: K. Karuppasamy

Abstract:

In this paper, analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill-poor soil system overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behaviour of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedal iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil–foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include magnitude of applied load, velocity of load, damping, ultimate resistance of poor soil and granular fill layer. Range of values of parameters has been considered as per Indian Railway conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil–foundation system.

Keywords: Infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load, nonlinear behavior of poor soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
1566 Subpixel Detection of Circular Objects Using Geometric Property

Authors: Wen-Yen Wu, Wen-Bin Yu

Abstract:

In this paper, we propose a method for detecting circular shapes with subpixel accuracy. First, the geometric properties of circles have been used to find the diameters as well as the circumference pixels. The center and radius are then estimated by the circumference pixels. Both synthetic and real images have been tested by the proposed method. The experimental results show that the new method is efficient.

Keywords: Subpixel, least squares estimation, circle detection, Hough transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
1565 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped, it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using MATLAB. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
1564 A Comparative Analysis of Artificial Neural Network and Autoregressive Integrated Moving Average Model on Modeling and Forecasting Exchange Rate

Authors: Mogari I. Rapoo, Diteboho Xaba

Abstract:

This paper examines the forecasting performance of Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) models with the published exchange rate obtained from South African Reserve Bank (SARB). ARIMA is one of the popular linear models in time series forecasting for the past decades. ARIMA and ANN models are often compared and literature revealed mixed results in terms of forecasting performance. The study used the MSE and MAE to measure the forecasting performance of the models. The empirical results obtained reveal the superiority of ARIMA model over ANN model. The findings further resolve and clarify the contradiction reported in literature over the superiority of ARIMA and ANN models.

Keywords: ARIMA, artificial neural networks models, error metrics, exchange rates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
1563 A Forward Automatic Censored Cell-Averaging Detector for Multiple Target Situations in Log-Normal Clutter

Authors: Musa'ed N. Almarshad, Saleh A. Alshebeili, Mourad Barkat

Abstract:

A challenging problem in radar signal processing is to achieve reliable target detection in the presence of interferences. In this paper, we propose a novel algorithm for automatic censoring of radar interfering targets in log-normal clutter. The proposed algorithm, termed the forward automatic censored cell averaging detector (F-ACCAD), consists of two steps: removing the corrupted reference cells (censoring) and the actual detection. Both steps are performed dynamically by using a suitable set of ranked cells to estimate the unknown background level and set the adaptive thresholds accordingly. The F-ACCAD algorithm does not require any prior information about the clutter parameters nor does it require the number of interfering targets. The effectiveness of the F-ACCAD algorithm is assessed by computing, using Monte Carlo simulations, the probability of censoring and the probability of detection in different background environments.

Keywords: CFAR, Log-normal clutter, Censoring, Probabilityof detection, Probability of false alarm, Probability of falsecensoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
1562 A Study on Algorithm Fusion for Recognition and Tracking of Moving Robot

Authors: Jungho Choi, Youngwan Cho

Abstract:

This paper presents an algorithm for the recognition and tracking of moving objects, 1/10 scale model car is used to verify performance of the algorithm. Presented algorithm for the recognition and tracking of moving objects in the paper is as follows. SURF algorithm is merged with Lucas-Kanade algorithm. SURF algorithm has strong performance on contrast, size, rotation changes and it recognizes objects but it is slow due to many computational complexities. Processing speed of Lucas-Kanade algorithm is fast but the recognition of objects is impossible. Its optical flow compares the previous and current frames so that can track the movement of a pixel. The fusion algorithm is created in order to solve problems which occurred using the Kalman Filter to estimate the position and the accumulated error compensation algorithm was implemented. Kalman filter is used to create presented algorithm to complement problems that is occurred when fusion two algorithms. Kalman filter is used to estimate next location, compensate for the accumulated error. The resolution of the camera (Vision Sensor) is fixed to be 640x480. To verify the performance of the fusion algorithm, test is compared to SURF algorithm under three situations, driving straight, curve, and recognizing cars behind the obstacles. Situation similar to the actual is possible using a model vehicle. Proposed fusion algorithm showed superior performance and accuracy than the existing object recognition and tracking algorithms. We will improve the performance of the algorithm, so that you can experiment with the images of the actual road environment.

Keywords: SURF, Optical Flow Lucas-Kanade, Kalman Filter, object recognition, object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
1561 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
1560 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: Detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
1559 Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology

Authors: Jagadish H. Pujar, Pallavi S. Gurjal, Shambhavi D. S, Kiran S. Kunnur

Abstract:

Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.

Keywords: Image Segmentation, Image smoothing, Edge Detection, Impulsive noise, Gaussian noise, Median filter, Canny edge, Eigen values, Eigen vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
1558 An Approach to Image Extraction and Accurate Skin Detection from Web Pages

Authors: Moheb R. Girgis, Tarek M. Mahmoud, Tarek Abd-El-Hafeez

Abstract:

This paper proposes a system to extract images from web pages and then detect the skin color regions of these images. As part of the proposed system, using BandObject control, we built a Tool bar named 'Filter Tool Bar (FTB)' by modifying the Pavel Zolnikov implementation. The Yahoo! Team provides us with the Yahoo! SDK API, which also supports image search and is really useful. In the proposed system, we introduced three new methods for extracting images from the web pages (after loading the web page by using the proposed FTB, before loading the web page physically from the localhost, and before loading the web page from any server). These methods overcome the drawback of the regular expressions method for extracting images suggested by Ilan Assayag. The second part of the proposed system is concerned with the detection of the skin color regions of the extracted images. So, we studied two famous skin color detection techniques. The first technique is based on the RGB color space and the second technique is based on YUV and YIQ color spaces. We modified the second technique to overcome the failure of detecting complex image's background by using the saturation parameter to obtain an accurate skin detection results. The performance evaluation of the efficiency of the proposed system in extracting images before and after loading the web page from localhost or any server in terms of the number of extracted images is presented. Finally, the results of comparing the two skin detection techniques in terms of the number of pixels detected are presented.

Keywords: Browser Helper Object, Color spaces, Image and URL extraction, Skin detection, Web Browser events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
1557 Health Assessment of Electronic Products using Mahalanobis Distance and Projection Pursuit Analysis

Authors: Sachin Kumar, Vasilis Sotiris, Michael Pecht

Abstract:

With increasing complexity in electronic systems there is a need for system level anomaly detection and fault isolation. Anomaly detection based on vector similarity to a training set is used in this paper through two approaches, one the preserves the original information, Mahalanobis Distance (MD), and the other that compresses the data into its principal components, Projection Pursuit Analysis. These methods have been used to detect deviations in system performance from normal operation and for critical parameter isolation in multivariate environments. The study evaluates the detection capability of each approach on a set of test data with known faults against a baseline set of data representative of such “healthy" systems.

Keywords: Mahalanobis distance, Principle components, Projection pursuit, Health assessment, Anomaly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
1556 Maximum Common Substructure Extraction in RNA Secondary Structures Using Clique Detection Approach

Authors: Shih-Yi Chao

Abstract:

The similarity comparison of RNA secondary structures is important in studying the functions of RNAs. In recent years, most existing tools represent the secondary structures by tree-based presentation and calculate the similarity by tree alignment distance. Different to previous approaches, we propose a new method based on maximum clique detection algorithm to extract the maximum common structural elements in compared RNA secondary structures. A new graph-based similarity measurement and maximum common subgraph detection procedures for comparing purely RNA secondary structures is introduced. Given two RNA secondary structures, the proposed algorithm consists of a process to determine the score of the structural similarity, followed by comparing vertices labelling, the labelled edges and the exact degree of each vertex. The proposed algorithm also consists of a process to extract the common structural elements between compared secondary structures based on a proposed maximum clique detection of the problem. This graph-based model also can work with NC-IUB code to perform the pattern-based searching. Therefore, it can be used to identify functional RNA motifs from database or to extract common substructures between complex RNA secondary structures. We have proved the performance of this proposed algorithm by experimental results. It provides a new idea of comparing RNA secondary structures. This tool is helpful to those who are interested in structural bioinformatics.

Keywords: Clique detection, labeled vertices, RNA secondary structures, subgraph, similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
1555 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
1554 Burst on Hurst Algorithm for Detecting Activity Patterns in Networks of Cortical Neurons

Authors: G. Stillo, L. Bonzano, M. Chiappalone, A. Vato, F. Davide, S. Martinoia

Abstract:

Electrophysiological signals were recorded from primary cultures of dissociated rat cortical neurons coupled to Micro-Electrode Arrays (MEAs). The neuronal discharge patterns may change under varying physiological and pathological conditions. For this reason, we developed a new burst detection method able to identify bursts with peculiar features in different experimental conditions (i.e. spontaneous activity and under the effect of specific drugs). The main feature of our algorithm (i.e. Burst On Hurst), based on the auto-similarity or fractal property of the recorded signal, is the independence from the chosen spike detection method since it works directly on the raw data.

Keywords: Burst detection, cortical neuronal networks, Micro-Electrode Array (MEA), wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
1553 Improving Worm Detection with Artificial Neural Networks through Feature Selection and Temporal Analysis Techniques

Authors: Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, Yuval Elovici

Abstract:

Computer worm detection is commonly performed by antivirus software tools that rely on prior explicit knowledge of the worm-s code (detection based on code signatures). We present an approach for detection of the presence of computer worms based on Artificial Neural Networks (ANN) using the computer's behavioral measures. Identification of significant features, which describe the activity of a worm within a host, is commonly acquired from security experts. We suggest acquiring these features by applying feature selection methods. We compare three different feature selection techniques for the dimensionality reduction and identification of the most prominent features to capture efficiently the computer behavior in the context of worm activity. Additionally, we explore three different temporal representation techniques for the most prominent features. In order to evaluate the different techniques, several computers were infected with five different worms and 323 different features of the infected computers were measured. We evaluated each technique by preprocessing the dataset according to each one and training the ANN model with the preprocessed data. We then evaluated the ability of the model to detect the presence of a new computer worm, in particular, during heavy user activity on the infected computers.

Keywords: Artificial Neural Networks, Feature Selection, Temporal Analysis, Worm Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1552 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
1551 Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features

Authors: Hyun-Koo Kim, Young-Nam Shin, Sa-gong Kuk, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.

Keywords: Night-time traffic light detection, multi-class classification, driving assistance system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3885
1550 A Robust Wavelet-Based Watermarking Algorithm Using Edge Detection

Authors: John N. Ellinas

Abstract:

In this paper, a robust watermarking algorithm using the wavelet transform and edge detection is presented. The efficiency of an image watermarking technique depends on the preservation of visually significant information. This is attained by embedding the watermark transparently with the maximum possible strength. The watermark embedding process is carried over the subband coefficients that lie on edges, where distortions are less noticeable, with a subband level dependent strength. Also, the watermark is embedded to selected coefficients around edges, using a different scale factor for watermark strength, that are captured by a morphological dilation operation. The experimental evaluation of the proposed method shows very good results in terms of robustness and transparency to various attacks such as median filtering, Gaussian noise, JPEG compression and geometrical transformations.

Keywords: Watermarking, wavelet transform, edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
1549 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target

Authors: Anh Duc Dang, Joachim Horn

Abstract:

This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbors are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.

Keywords: Formation control, potential field method, obstacle avoidance, swarm intelligence, multi-agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
1548 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
1547 Memory Leak Detection in Distributed System

Authors: Roohi Shabrin S., Devi Prasad B., Prabu D., Pallavi R. S., Revathi P.

Abstract:

Due to memory leaks, often-valuable system memory gets wasted and denied for other processes thereby affecting the computational performance. If an application-s memory usage exceeds virtual memory size, it can leads to system crash. Current memory leak detection techniques for clusters are reactive and display the memory leak information after the execution of the process (they detect memory leak only after it occur). This paper presents a Dynamic Memory Monitoring Agent (DMMA) technique. DMMA framework is a dynamic memory leak detection, that detects the memory leak while application is in execution phase, when memory leak in any process in the cluster is identified by DMMA it gives information to the end users to enable them to take corrective actions and also DMMA submit the affected process to healthy node in the system. Thus provides reliable service to the user. DMMA maintains information about memory consumption of executing processes and based on this information and critical states, DMMA can improve reliability and efficaciousness of cluster computing.

Keywords: Dynamic Memory Monitoring Agent (DMMA), Cluster Computing, Memory Leak, Fault Tolerant Framework, Dynamic Memory Leak Detection (DMLD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
1546 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: Data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
1545 Labview-Based System for Fiber Links Events Detection

Authors: Bo Liu, Qingshan Kong, Weiqing Huang

Abstract:

With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.

Keywords: Empirical mode decomposition (EMD), events detection, Gabor transform, optical time domain reflectometer (OTDR), wavelet threshold denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803
1544 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
1543 Object Recognition on Horse Riding Simulator System

Authors: Kyekyung Kim, Sangseung Kang, Suyoung Chi, Jaehong Kim

Abstract:

In recent years, IT convergence technology has been developed to get creative solution by combining robotics or sports science technology. Object detection and recognition have mainly applied to sports science field that has processed by recognizing face and by tracking human body. But object detection and recognition using vision sensor is challenge task in real world because of illumination. In this paper, object detection and recognition using vision sensor applied to sports simulator has been introduced. Face recognition has been processed to identify user and to update automatically a person athletic recording. Human body has tracked to offer a most accurate way of riding horse simulator. Combined image processing has been processed to reduce illumination adverse affect because illumination has caused low performance in detection and recognition in real world application filed. Face has recognized using standard face graph and human body has tracked using pose model, which has composed of feature nodes generated diverse face and pose images. Face recognition using Gabor wavelet and pose recognition using pose graph is robust to real application. We have simulated using ETRI database, which has constructed on horse riding simulator.

Keywords: Horse riding simulator, Object detection, Object recognition, User identification, Pose recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
1542 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
1541 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings

Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.

Keywords: Building system, time series, diagnosis, outliers, delay, data gap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
1540 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner

Authors: A. Umemuro, M. Sato, M. Narita, S. Hori, S. Sakurai, T. Nakayama, A. Nakazawa, T. Ogura

Abstract:

Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.

Keywords: EEG scanner, eye-detector, mammography, observers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 361