Search results for: ACO Ant Colony Optimization
1546 Application of Central Composite Design Based Response Surface Methodology in Parameter Optimization and on Cellulase Production Using Agricultural Waste
Authors: R.Muthuvelayudham, T.Viruthagiri
Abstract:
Response Surface Methodology (RSM) is a powerful and efficient mathematical approach widely applied in the optimization of cultivation process. Cellulase enzyme production by Trichoderma reesei RutC30 using agricultural waste rice straw and banana fiber as carbon source were investigated. In this work, sequential optimization strategy based statistical design was employed to enhance the production of cellulase enzyme through submerged cultivation. A fractional factorial design (26-2) was applied to elucidate the process parameters that significantly affect cellulase production. Temperature, Substrate concentration, Inducer concentration, pH, inoculum age and agitation speed were identified as important process parameters effecting cellulase enzyme synthesis. The concentration of lignocelluloses and lactose (inducer) in the cultivation medium were found to be most significant factors. The steepest ascent method was used to locate the optimal domain and a Central Composite Design (CCD) was used to estimate the quadratic response surface from which the factor levels for maximum production of cellulase were determined.Keywords: Banana fiber, Cellulase, Optimization, Rice straw
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24031545 Split-Pipe Design of Water Distribution Networks Using a Combination of Tabu Search and Genetic Algorithm
Authors: J. Tospornsampan, I. Kita, M. Ishii, Y. Kitamura
Abstract:
In this paper a combination approach of two heuristic-based algorithms: genetic algorithm and tabu search is proposed. It has been developed to obtain the least cost based on the split-pipe design of looped water distribution network. The proposed combination algorithm has been applied to solve the three well-known water distribution networks taken from the literature. The development of the combination of these two heuristic-based algorithms for optimization is aimed at enhancing their strengths and compensating their weaknesses. Tabu search is rather systematic and deterministic that uses adaptive memory in search process, while genetic algorithm is probabilistic and stochastic optimization technique in which the solution space is explored by generating candidate solutions. Split-pipe design may not be realistic in practice but in optimization purpose, optimal solutions are always achieved with split-pipe design. The solutions obtained in this study have proved that the least cost solutions obtained from the split-pipe design are always better than those obtained from the single pipe design. The results obtained from the combination approach show its ability and effectiveness to solve combinatorial optimization problems. The solutions obtained are very satisfactory and high quality in which the solutions of two networks are found to be the lowest-cost solutions yet presented in the literature. The concept of combination approach proposed in this study is expected to contribute some useful benefits in diverse problems.
Keywords: GAs, Heuristics, Looped network, Least-cost design, Pipe network, Optimization, TS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17911544 Optimization Using Simulation of the Vehicle Routing Problem
Authors: Nayera E. El-Gharably, Khaled S. El-Kilany, Aziz E. El-Sayed
Abstract:
A key element of many distribution systems is the routing and scheduling of vehicles servicing a set of customers. A wide variety of exact and approximate algorithms have been proposed for solving the vehicle routing problems (VRP). Exact algorithms can only solve relatively small problems of VRP, which is classified as NP-Hard. Several approximate algorithms have proven successful in finding a feasible solution not necessarily optimum. Although different parts of the problem are stochastic in nature; yet, limited work relevant to the application of discrete event system simulation has addressed the problem. Presented here is optimization using simulation of VRP; where, a simplified problem has been developed in the ExtendSimTM simulation environment; where, ExtendSimTM evolutionary optimizer is used to minimize the total transportation cost of the problem. Results obtained from the model are very satisfactory. Further complexities of the problem are proposed for consideration in the future.Keywords: Discrete event system simulation, optimization using simulation, vehicle routing problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58541543 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization
Authors: Lana Dalawr Jalal
Abstract:
This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex threedimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.Keywords: Obstacle Avoidance, Particle Swarm Optimization, Three-Dimensional Path Planning Unmanned Aerial Vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20491542 Shape Memory alloy Actuator System Optimization for New Hand Prostheses
Authors: Mogeeb A. Ahmed, Mona F. Taher, Sayed M. Metwalli
Abstract:
Shape memory alloy (SMA) actuators have found a wide range of applications due to their unique properties such as high force, small size, lightweight and silent operation. This paper presents the development of compact (SMA) actuator and cooling system in one unit. This actuator is developed for multi-fingered hand. It consists of nickel-titanium (Nitinol) SMA wires in compact forming. The new arrangement insulates SMA wires from the human body by housing it in a heat sink and uses a thermoelectric device for rejecting heat to improve the actuator performance. The study uses optimization methods for selecting the SMA wires geometrical parameters and the material of a heat sink. The experimental work implements the actuator prototype and measures its response.Keywords: Optimization, Prosthetic hand, Shape memory alloy, Thermoelectric device, Actuator system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20551541 Thermo Mechanical Design and Analysis of PEM Fuel cell Plate
Authors: Saravana Kannan Thangavelu
Abstract:
Fuel and oxidant gas delivery plate, or fuel cell plate, is a key component of a Proton Exchange Membrane (PEM) fuel cell. To manufacture low-cost and high performance fuel cell plates, advanced computer modeling and finite element structure analysis are used as virtual prototyping tools for the optimization of the plates at the early design stage. The present study examines thermal stress analysis of the fuel cell plates that are produced using a patented, low-cost fuel cell plate production technique based on screen-printing. Design optimization is applied to minimize the maximum stress within the plate, subject to strain constraint with both geometry and material parameters as design variables. The study reveals the characteristics of the printed plates, and provides guidelines for the structure and material design of the fuel cell plate.Keywords: Design optimization, FEA, PEM fuel cell, Thermal stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22201540 Cross Layer Optimization for Fairness Balancing Based on Adaptively Weighted Utility Functions in OFDMA Systems
Authors: Jianwei Wang, Timo Korhonen, Yuping Zhao
Abstract:
Cross layer optimization based on utility functions has been recently studied extensively, meanwhile, numerous types of utility functions have been examined in the corresponding literature. However, a major drawback is that most utility functions take a fixed mathematical form or are based on simple combining, which can not fully exploit available information. In this paper, we formulate a framework of cross layer optimization based on Adaptively Weighted Utility Functions (AWUF) for fairness balancing in OFDMA networks. Under this framework, a two-step allocation algorithm is provided as a sub-optimal solution, whose control parameters can be updated in real-time to accommodate instantaneous QoS constrains. The simulation results show that the proposed algorithm achieves high throughput while balancing the fairness among multiple users.Keywords: OFDMA, Fairness, AWUF, QoS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18321539 Design Optimization of Ferrocement-Laminated Plate Using Genetic Algorithm
Authors: M. Rokonuzzaman, Z. Gürdal
Abstract:
This paper describes the design optimization of ferrocement-laminated plate made up of reinforcing steel wire mesh(es) and cement mortar. For the improvement of the designing process, the plate is modeled as a multi-layer medium, dividing the ferrocement plate into layers of mortar and ferrocement. The mortar layers are assumed to be isotropic in nature and the ferrocement layers are assumed to be orthotropic. The ferrocement layers are little stiffer, but much more costlier, than the mortar layers due the presence of steel wire mesh. The optimization is performed for minimum weight design of the laminate using a genetic algorithm. The optimum designs are discussed for different plate configurations and loadings, and it is compared with the worst designs obtained at the final generation. The paper provides a procedure for the designers in decision-making process.
Keywords: Buckling, Ferrocement-Laminated Plate, Genetic Algorithm, Plate Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21901538 Experimental Analysis of Diesel Hydrotreating Reactor to Development a Simplified Tool for Process Real- time Optimization
Authors: S.Shokri, S.Zahedi, M.Ahmadi Marvast, B. Baloochi, H.Ganji
Abstract:
In this research, a systematic investigation was carried out to determine the optimum conditions of HDS reactor. Moreover, a suitable model was developed for a rigorous RTO (real time optimization) loop of HDS (Hydro desulfurization) process. A systematic experimental series was designed based on CCD (Central Composite design) and carried out in the related pilot plant to tune the develop model. The designed variables in the experiments were Temperature, LHSV and pressure. However, the hydrogen over fresh feed ratio was remained constant. The ranges of these variables were respectively equal to 320-380ºC, 1- 21/hr and 50-55 bar. a power law kinetic model was also developed for our further research in the future .The rate order and activation energy , power of reactant concentration and frequency factor of this model was respectively equal to 1.4, 92.66 kJ/mol and k0=2.7*109 .
Keywords: Statistical model, Multiphase Reactors, Gas oil, Hydrodesulfurization, Optimization, Kinetics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26901537 Optimization Method Based MPPT for Wind Power Generators
Authors: Chun-Yao Lee , Yi-Xing Shen , Jung-Cheng Cheng , Chih-Wen Chang, Yi-Yin Li
Abstract:
This paper proposes the method combining artificial neural network with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. With the measurements of wind speed, rotor speed of wind generator and output power, the artificial neural network can be trained and the wind speed can be estimated. The proposed control system in this paper provides a manner for searching the maximum output power of wind generator even under the conditions of varying wind speed and load impedance.
Keywords: maximum power point tracking, artificial neural network, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18291536 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method
Authors: Mamidi Ramakrishna Rao
Abstract:
Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.
Keywords: Direct search, DFIG, equivalent circuit parameters, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9071535 Selecting Materialized Views Using Two-Phase Optimization with Multiple View Processing Plan
Authors: Jiratta Phuboon-ob, Raweewan Auepanwiriyakul
Abstract:
A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance cost. Therefore, in this paper, we introduce a new approach aimed at solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that our method provides a further improvement in term of query processing cost and view maintenance cost.Keywords: Data warehouse, materialized views, view selectionproblem, two-phase optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16641534 UB-Tree Indexing for Semantic Query Optimization of Range Queries
Authors: S. Housseno, A. Simonet, M. Simonet
Abstract:
Semantic query optimization consists in restricting the search space in order to reduce the set of objects of interest for a query. This paper presents an indexing method based on UB-trees and a static analysis of the constraints associated to the views of the database and to any constraint expressed on attributes. The result of the static analysis is a partitioning of the object space into disjoint blocks. Through Space Filling Curve (SFC) techniques, each fragment (block) of the partition is assigned a unique identifier, enabling the efficient indexing of fragments by UB-trees. The search space corresponding to a range query is restricted to a subset of the blocks of the partition. This approach has been developed in the context of a KB-DBMS but it can be applied to any relational system.Keywords: Index, Range query, UB-tree, Space Filling Curve, Query optimization, Views, Database, Integrity Constraint, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15031533 Multi-objective Optimisation of Composite Laminates under Heat and Moisture Effects using a Hybrid Neuro-GA Algorithm
Authors: M. R. Ghasemi, A. Ehsani
Abstract:
In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.Keywords: Composite Laminates, GA, Multi-objectiveOptimisation, Neural Networks, RBFNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16341532 Flow Modeling and Runner Design Optimization in Turgo Water Turbines
Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis
Abstract:
The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40611531 Interactive Compromise Approach with Particle Swarm Optimization for Environmental/Economic Power Dispatch
Authors: Ming-Tang Tsai, Chih-Wei Yen
Abstract:
In this paper, an Interactive Compromise Approach with Particle Swarm Optimization(ICA-PSO) is presented to solve the Economic Emission Dispatch(EED) problem. The cost function and emission function are modeled as the nonsmooth functions, respectively. The bi-objective including both the minimization of cost and emission is formulated in this paper. ICA-PSO is proposed to solve EED problem for finding a better compromise solution. The solution methodology can offer a global or near-global solution for decision-making requirements. The effectiveness and efficiency of ICA-PSO are demonstrated by a sample test system. Test results can be shown that the proposed method provide a practical and flexible framework for power dispatch.Keywords: Interactive Compromise Approach, Emission Control, Economic Dispatch, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14561530 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
This paper introduces an original method of parametric optimization of the structure for multimodal decisionlevel fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.
Keywords: Сlassification accuracy, fusion solution, total error rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19781529 Design of Optimal Proportional Integral Derivative Attitude Controller for an Uncoupled Flexible Satellite Using Particle Swarm Optimization
Authors: Martha C. Orazulume, Jibril D. Jiya
Abstract:
Flexible satellites are equipped with various appendages which vibrate under the influence of any excitation and make the attitude of the satellite to be unstable. Therefore, the system must be able to adjust to balance the effect of these appendages in order to point accurately and satisfactorily which is one of the most important problems in satellite design. Proportional Integral Derivative (PID) Controller is simple to design and computationally efficient to implement which is used to stabilize the effect of these flexible appendages. However, manual turning of the PID is time consuming, waste energy and money. Particle Swarm Optimization (PSO) is used to tune the parameters of PID Controller. Simulation results obtained show that PSO tuned PID Controller is able to re-orient the spacecraft attitude as well as dampen the effect of mechanical resonance and yields better performance when compared with manually tuned PID Controller.
Keywords: Attitude control, flexible satellite, particle swarm optimization, PID controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12781528 Using Swarm Intelligence for Improving Accuracy of Fuzzy Classifiers
Authors: Hassan M. Elragal
Abstract:
This paper discusses a method for improving accuracy of fuzzy-rule-based classifiers using particle swarm optimization (PSO). Two different fuzzy classifiers are considered and optimized. The first classifier is based on Mamdani fuzzy inference system (M_PSO fuzzy classifier). The second classifier is based on Takagi- Sugeno fuzzy inference system (TS_PSO fuzzy classifier). The parameters of the proposed fuzzy classifiers including premise (antecedent) parameters, consequent parameters and structure of fuzzy rules are optimized using PSO. Experimental results show that higher classification accuracy can be obtained with a lower number of fuzzy rules by using the proposed PSO fuzzy classifiers. The performances of M_PSO and TS_PSO fuzzy classifiers are compared to other fuzzy based classifiersKeywords: Fuzzy classifier, Optimization of fuzzy systemparameters, Particle swarm optimization, Pattern classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23511527 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation
Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta
Abstract:
Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.Keywords: Channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, Lévy flight distribution, optimization, improved multi–objective Firefly algorithms, Pareto optimal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11611526 Optimal Capacitor Placement in Distribution Feeders
Authors: N. Rugthaicharoencheep, S. Auchariyamet
Abstract:
Optimal capacitor allocation in distribution systems has been studied for a long times. It is an optimization problem which has an objective to define the optimal sizes and locations of capacitors to be installed. In this works, an overview of capacitor placement problem in distribution systems is briefly introduced. The objective functions and constraints of the problem are listed and the methodologies for solving the problem are summarized.Keywords: Capacitor Placement, Distribution Systems, Optimization Techniques
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24271525 Optimization of Transfer Pricing in a Recession with Reflection on Croatian Situation
Authors: Jasminka Radolović
Abstract:
Countries in recession, among them Croatia, have lower tax revenues as a result of unfavorable economic situation, which is decrease of the economic activities and unemployment. The global tax base has decreased. In order to create larger state revenues, states use the institute of tax authorities. By controlling transfer pricing in the international companies and using certain techniques, tax authorities can create greater tax obligations for the companies in a short period of time.Keywords: Documentation, Methods, Tax Optimization, Transfer Pricing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14921524 Reducing Variation of Dyeing Process in Textile Manufacturing Industry
Abstract:
This study deals with a multi-criteria optimization problem which has been transformed into a single objective optimization problem using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Grey Relational Analyses (GRA) approach. Grey-RSM and Grey-ANN are hybrid techniques which can be used for solving multi-criteria optimization problem. There have been two main purposes of this research as follows. 1. To determine optimum and robust fiber dyeing process conditions by using RSM and ANN based on GRA, 2. To obtain the best suitable model by comparing models developed by different methodologies. The design variables for fiber dyeing process in textile are temperature, time, softener, anti-static, material quantity, pH, retarder, and dispergator. The quality characteristics to be evaluated are nominal color consistency of fiber, maximum strength of fiber, minimum color of dyeing solution. GRA-RSM with exact level value, GRA-RSM with interval level value and GRA-ANN models were compared based on GRA output value and MSE (Mean Square Error) performance measurement of outputs with each other. As a result, GRA-ANN with interval value model seems to be suitable reducing the variation of dyeing process for GRA output value of the model.Keywords: Artificial Neural Network, Grey Relational Analysis, Optimization, Response Surface Methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35591523 Hybrid Algorithm for Hammerstein System Identification Using Genetic Algorithm and Particle Swarm Optimization
Authors: Tomohiro Hachino, Kenji Shimoda, Hitoshi Takata
Abstract:
This paper presents a method of model selection and identification of Hammerstein systems by hybridization of the genetic algorithm (GA) and particle swarm optimization (PSO). An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The weighting parameters of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. On the other hand, the adjusting parameters of the ACF model structure are properly selected by the hybrid algorithm of the GA and PSO, where the Akaike information criterion is utilized as the evaluation value function. Simulation results are shown to demonstrate the effectiveness of the proposed hybrid algorithm.Keywords: Hammerstein system, identification, automatic choosing function model, genetic algorithm, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041522 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration
Authors: C. Iraklis, G. Evmiridis, A. Iraklis
Abstract:
Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.
Keywords: Congestion, distribution networks, loss reduction, particle swarm optimization, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7501521 Optimization of PEM Fuel Cell Biphasic Model
Authors: Boubekeur Dokkar, Nasreddine Chennouf, Noureddine Settou, Belkhir Negrou, Abdesslam Benmhidi
Abstract:
The optimal operation of proton exchange membrane fuel cell (PEMFC) requires good water management which is presented under two forms vapor and liquid. Moreover, fuel cells have to reach higher output require integration of some accessories which need electrical power. In order to analyze fuel cells operation and different species transport phenomena a biphasic mathematical model is presented by governing equations set. The numerical solution of these conservation equations is calculated by Matlab program. A multi-criteria optimization with weighting between two opposite objectives is used to determine the compromise solutions between maximum output and minimal stack size. The obtained results are in good agreement with available literature data.
Keywords: Biphasic model, PEM fuel cell, optimization, simulation, specie transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20361520 Analysis and Application of in Indirect MinimumJerk Method for Higher order Differential Equation in Dynamics Optimization Systems
Authors: V. Tawiwat, T. Amornthep, P. Pnop
Abstract:
Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper considers the indirect minimum Jerk method for higher order differential equation in dynamics optimization proposes a simple yet very interesting indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of indirect jerks are found using the dynamic optimization methods together with the numerical approximation. This case considers the linear equation of a simple system, for instance, mass, spring and damping. The simple system uses two mass connected together by springs. The boundary initial is defined the fix end time and end point. The higher differential order is solved by Galerkin-s methods weight residual. As the result, the 6th higher differential order shows the faster solving time.Keywords: Optimization, Dynamic, Linear Systems, Jerks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13361519 A Hybrid Radial-Based Neuro-GA Multiobjective Design of Laminated Composite Plates under Moisture and Thermal Actions
Authors: Mohammad Reza Ghasemi, Ali Ehsani
Abstract:
In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.Keywords: Composite Laminates, GA, Multi-objectiveOptimization, Neural Networks, RBFNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14691518 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages
Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang
Abstract:
Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.Keywords: Epoxy molding compounds, optimization, regression analysis, transfer molding process, voids, wire sweep.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15331517 Canonical PSO based Nanorobot Control for Blood Vessel Repair
Authors: Pinfa Boonrong, Boonserm Kaewkamnerdpong
Abstract:
As nanotechnology advances, the use of nanotechnology for medical purposes in the field of nanomedicine seems more promising; the rise of nanorobots for medical diagnostics and treatments could be arriving in the near future. This study proposes a swarm intelligence based control mechanism for swarm nanorobots that operate as artificial platelets to search for wounds. The canonical particle swarm optimization algorithm is employed in this study. A simulation in the circulatory system is constructed and used for demonstrating the movement of nanorobots with essential characteristics to examine the performance of proposed control mechanism. The effects of three nanorobot capabilities including their perception range, maximum velocity and respond time are investigated. The results show that canonical particle swarm optimization can be used to control the early version nanorobots with simple behaviors and actions.
Keywords: Artificial platelets, canonical particle swarm optimization, nanomedicine, nanorobot, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693