Search results for: learning flow.
658 A Case Study on Management of Coal Seam Gas By-Product Water
Authors: Mojibul Sajjad, Mohammad G. Rasul, Md. Sharif Imam Ibne Amir
Abstract:
The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of very long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland, Australia Coal Seam Gas (CSG) industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully CSG field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects.
Keywords: Coal Seam Gas (CSG), Cleat Water, Hydro-Fracking, Desalination, Reverse Osmosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685657 Development of a Cost Effective Two Wheel Tractor Mounted Mobile Maize Sheller for Small Farmers in Bangladesh
Authors: M. Israil Hossain, T. P. Tiwari, Ashrafuzzaman Gulandaz, Nusrat Jahan
Abstract:
Two-wheel tractor (power tiller) is a common tillage tool in Bangladesh agriculture for easy access in fragmented land with affordable price of small farmers. Traditional maize sheller needs to be carried from place to place by hooking with two-wheel tractor (2WT) and set up again for shelling operation which takes longer time for preparation of maize shelling. The mobile maize sheller eliminates the transportation problem and can start shelling operation instantly any place as it is attached together with 2WT. It is counterclockwise rotating cylinder, axial flow type sheller, and grain separated with a frictional force between spike tooth and concave. The maize sheller is attached with nuts and bolts in front of the engine base of 2WT. The operating power of the sheller comes from the fly wheel of the engine of the tractor through ‘V” belt pulley arrangement. The average shelling capacity of the mobile sheller is 2.0 t/hr, broken kernel 2.2%, and shelling efficiency 97%. The average maize shelling cost is Tk. 0.22/kg and traditional custom hire rate is Tk.1.0/kg, respectively (1 US$=Tk.78.0). The service provider of the 2WT can transport the mobile maize sheller long distance in operator’s seating position. The manufacturers started the fabrication of mobile maize sheller. This mobile maize sheller is also compatible for the other countries where 2WT is available for farming operation.
Keywords: Cost effective, mobile maize sheller, maize shelling capacity, small farmers, two-wheel tractor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906656 Software Maintenance Severity Prediction with Soft Computing Approach
Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581655 Analysis of Initial Entry-Level Technology Course Impacts on STEM Major Selection
Authors: Ethan Shafer, Timothy Graziano, Jay Fisher
Abstract:
This research seeks to answer whether first-year courses at institutions of higher learning can impact STEM major selection. Unlike many universities, an entry-level technology course (often referred to as CS0) is required for all United States Military Academy (USMA) students–regardless of major–in their first year of attendance. Students at the Academy choose their major at the end of their first year of studies. Through student responses to a multi-semester survey, this paper identifies a number of factors that potentially influence STEM major selection. Student demographic data, pre-existing exposure and access to technology, perceptions of STEM subjects, and initial desire for a STEM major are captured before and after taking a CS0 course. An analysis of factors that contribute to student perception of STEM and major selection are presented. This work provides recommendations and suggestions for institutions currently providing or looking to provide CS0-like courses to their students.
Keywords: STEM major, STEM, pedagogy, digital literacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210654 Face Detection using Variance based Haar-Like feature and SVM
Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung
Abstract:
This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3735653 Thermal Management of Space Power Electronics using TLM-3D
Authors: R. Hocine, K. Belkacemi, A. Boukortt, A. Boudjemai
Abstract:
When designing satellites, one of the major issues aside for designing its primary subsystems is to devise its thermal. The thermal management of satellites requires solving different sets of issues with regards to modelling. If the satellite is well conditioned all other parts of the satellite will have higher temperature no matter what. The main issue of thermal modelling for satellite design is really making sure that all the other points of the satellite will be within the temperature limits they are designed. The insertion of power electronics in aerospace technologies is becoming widespread and the modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. This paper presents a Three-Dimensional Modal Transmission Line Matrix (3D-TLM) implementation of transient heat flow in space power electronics. In such kind of components heat dissipation and good thermal management are essential. Simulation provides the cheapest tool to investigate all aspects of power handling. The 3DTLM has been successful in modeling heat diffusion problems and has proven to be efficient in terms of stability and complex geometry. The results show a three-dimensional visualisation of self-heating phenomena in the device affected by outer space constraints, and will presents possible approaches for increasing the heat dissipation capability of the power modules.
Keywords: Thermal management, conduction, heat dissipation, CTE, ceramic, heat spreader, nodes, 3D-TLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785652 An Assessment of Groundwater Crisis in Iran Case Study: Fars Province
Authors: Mohammad Hossein Hojjati , Fardin Boustani
Abstract:
Groundwater is one of the most important water resources in Fars province. Based on this study, 95 percent of the total annual water consumption in Fars is used for agriculture, whereas the percentages for domestic and industrial uses are 4 and 1 percent, respectively. Population growth, urban and industrial growth, and agricultural development in Fars have created a condition of water stress. In this province, farmers and other users are pumping groundwater faster than its natural replenishment rate, causing a continuous drop in groundwater tables and depletion of this resource. In this research variation of groundwater level , their effects and ways to help control groundwater levels in some plains of Fars were evaluated .Excessive exploitation of groundwater in Darab, Jahrom, Estahban, Arsanjan, Khir and Niriz plains of Fars caused the groundwater levels fall too fast or to unacceptable levels. The average drawdown of the water table in Arsanjan, Khir. Estahban and Niriz plain plains were 12,8, 9 and 6 meters during 16,11,11 and 13 years ago respectively. This not only reduces available water resources and well yields but also can saline water intrusion, reductions in river flow and in wetland areas , drying springs, and ground subsidence, considerable increase in pumping costs and a significant decline in crop yields as a result of the increasing salinity. Finally based on situation and condition of the aquifer some suggestions are recommended.
Keywords: Fars province , ground water overdraft , water table
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674651 Research on the Optimization of the Facility Layout of Efficient Cafeterias for Troops
Authors: Qing Zhang, Jiachen Nie, Yujia Wen, Guanyuan Kou, Peng Yu, Kun Xia, Qin Yang, Li Ding
Abstract:
Background: A facility layout problem (FLP) is an NP-complete (non-deterministic polynomial) problem, for which is hard to obtain an exact optimal solution. FLP has been widely studied in various limited spaces and workflows. For example, cafeterias with many types of equipment for troops cause chaotic processes when dining. Objective: This article tried to optimize the layout of a troops’ cafeteria and to improve the overall efficiency of the dining process. Methods: First, the original cafeteria layout design scheme was analyzed from an ergonomic perspective and two new design schemes were generated. Next, three facility layout models were designed, and further simulation was applied to compare the total time and density of troops between each scheme. Last, an experiment of the dining process with video observation and analysis verified the simulation results. Results: In a simulation, the dining time under the second new layout is shortened by 2.25% and 1.89% (p<0.0001, p=0.0001) compared with the other two layouts, while troops-flow density and interference both greatly reduced in the two new layouts. In the experiment, process completing time and the number of interferences reduced as well, which verified corresponding simulation results. Conclusion: Our two new layout schemes are tested to be optimal by a series of simulation and space experiments. In future research, similar approaches could be applied when taking layout-design algorithm calculation into consideration.
Keywords: Troops’ cafeteria, layout optimization, dining efficiency, AnyLogic simulation, field experiment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509650 Comparison of the Effectiveness of Communication between the Traditional Lecture and IELS
Authors: A. Althobaiti, M. Munro
Abstract:
Communication and effective information exchange within technology has become a crucial part of delivering knowledge to students during the learning process. It enables better understanding, builds trust and respect, and increases the sharing of knowledge between students. This paper examines the communication between undergraduate students and their lecturers during the traditional lecture and when using the Interactive Electronic Lecture System (IELS). The IELS is an application that offers a set of components which support the effective communication between students and their peers and between students and their lecturers. Moreover, this paper highlights communication skills such as sender, receiver, channel and feedback. It will show how the IELS creates a rich communication environment between its users and how they communicate effectively. To examine and assess the effectiveness of communication, an experiment was conducted on groups of users; students and lecturers. The first group communicated in the traditional lecture while the second group communicated by means of the IELS application. The results show that there was more effective communication between the second group than the first.
Keywords: Communication, effective information exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609649 The Code-Mixing of Japanese, English and Thai in Line Chat
Authors: Premvadee Na Nakornpanom
Abstract:
Code- mixing in spontaneous speech has been widely discussed, but not in virtual situations; especially in context of the third language learning students. Thus, this study is an attempt to explore the linguistic characteristics of the mixing of Japanese, English and Thai in a mobile Line chat room by students with their background of English as L2, Japanese as L3 and Thai as mother tongue. The result found that insertion of Thai content words is a very common linguistic phenomenon embedded with the other two languages in the sentences. As chatting is to be ‘relational’ or ‘interactional’, it affected the style of lexical choices to be speech-like, more personal and emotionally-related. A personal pronoun in Japanese is often mixed into the sentences. The Japanese sentence-final question particle か “ka” was added to the end of the sentence based on Thai grammar rules. Some unique characteristics were created while chatting.
Keywords: Code-mixing, Japanese, English, Thai, Line chat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3448648 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060647 Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series
Authors: Chokri Slim
Abstract:
The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.
Keywords: Neuro-fuzzy, Extended Kalman filter, nonlinear systems, financial time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012646 Shannon-Weaver Biodiversity of Neutrophils in Fractal Networks of Immunofluorescence for Medical Diagnostics
Authors: N.E.Galich
Abstract:
We develop new nonlinear methods of immunofluorescence analysis for a sensitive technology of respiratory burst reaction of DNA fluorescence due to oxidative activity in the peripheral blood neutrophils. Histograms in flow cytometry experiments represent a fluorescence flashes frequency as functions of fluorescence intensity. We used the Shannon-Weaver index for definition of neutrophils- biodiversity and Hurst index for definition of fractal-s correlations in immunofluorescence for different donors, as the basic quantitative criteria for medical diagnostics of health status. We analyze frequencies of flashes, information, Shannon entropies and their fractals in immunofluorescence networks due to reduction of histogram range. We found the number of simplest universal correlations for biodiversity, information and Hurst index in diagnostics and classification of pathologies for wide spectra of diseases. In addition is determined the clear criterion of a common immunity and human health status in a form of yes/no answers type. These answers based on peculiarities of information in immunofluorescence networks and biodiversity of neutrophils. Experimental data analysis has shown the existence of homeostasis for information entropy in oxidative activity of DNA in neutrophil nuclei for all donors.Keywords: blood and cells fluorescence in diagnostics ofdiseases, cytometric histograms, entropy and information in fractalnetworks of oxidative activity of DNA, long-range chromosomalcorrelations in living cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700645 Simulation of Static Frequency Converter for Synchronous Machine Operation and Investigation of Shaft Voltage
Authors: Arun Kumar Datta, M. A. Ansari, N. R. Mondal, B. V. Raghavaiah, Manisha Dubey, Shailendra Jain
Abstract:
This study is carried out to understand the effects of Static frequency converter (SFC) on large machine. SFC has a feature of four quadrant operations. By virtue of this it can be implemented to run a synchronous machine either as a motor or alternator. This dual mode operation helps a single machine to start & run as a motor and then it can be converted as an alternator whenever required. One such dual purpose machine is taken here for study. This machine is installed at a laboratory carrying out short circuit test on high power electrical equipment. SFC connected with this machine is broadly described in this paper. The same SFC has been modeled with the MATLAB/Simulink software. The data applied on this virtual model are the actual parameters from SFC and synchronous machine. After running the model, simulated machine voltage and current waveforms are validated with the real measurements. Processing of these waveforms is done through Fast Fourier Transformation (FFT) which reveals that the waveforms are not sinusoidal rather they contain number of harmonics. These harmonics are the major cause of generating shaft voltage. It is known that bearings of electrical machine are vulnerable to current flow through it due to shaft voltage. A general discussion on causes of shaft voltage in perspective with this machine is presented in this paper.
Keywords: Alternators, AC-DC power conversion, capacitive coupling, electric discharge machining, frequency converter, Fourier transforms, inductive coupling, simulation, Shaft voltage, synchronous machines, static excitation, thyristor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6059644 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.
Keywords: Bayesian, Forecast, Stock, BART.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734643 Probabilistic Bayesian Framework for Infrared Face Recognition
Authors: Moulay A. Akhloufi, Abdelhakim Bendada
Abstract:
Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.
Keywords: Face recognition, biometrics, probabilistic imageprocessing, infrared imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877642 Employment Promotion and Its Role in Counteracting Unemployment during the Financial Crisis in the USA
Authors: Beata Wentura-Dudek
Abstract:
In the United States in 2007-2010 before the crisis, the US labour market policy focused mainly on providing residents with unemployment insurance, after the recession this policy changed. The aim of the article was to present quantitative research presenting the most effective labor market instruments contributing to reducing unemployment during the crisis in the USA. The article presents research based on the analysis of available documents and statistical data. The results of the conducted research show that the most effective forms of counteracting unemployment at that time were: direct job creation, job search assistance, subsidized employment, training and employment promotion using new technologies, including social media.
Keywords: United States, financial crisis, unemployment, employment promotion, social media, job creation, training, labour market, employment agencies, lifelong learning, job search assistance, subsidized employment, companies, tax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752641 Power Distance and Knowledge Management from a Post-Taylorist Perspective
Authors: John Walton, Vishal Parikh
Abstract:
Contact centres have been exemplars of scientific management in the discipline of operations management for more than a decade now. With the movement of industries from a resource based economy to knowledge based economy businesses have started to realize the customer eccentricity being the key to sustainability amidst high velocity of the market. However, as technologies have converged and advanced, so have the contact centres. Contact Centres have redirected the supply chains and the concept of retailing is highly diminished due to over exaggeration of cost reduction strategies. In conditions of high environmental velocity together with services featuring considerable information intensity contact centres will require up to date and enlightened agents to satisfy the demands placed upon them by those requesting their services. In this paper we examine salient factors such as Power Distance, Knowledge structures and the dynamics of job specialisation and enlargement to suggest critical success factors in the domain of contact centres.
Keywords: Post Taylorism, Knowledge Management, Power Distance, Organisational Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867640 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431639 Generation of Artificial Earthquake Accelerogram Compatible with Spectrum using the Wavelet Packet Transform and Nero-Fuzzy Networks
Authors: Peyman Shadman Heidari, Mohammad Khorasani
Abstract:
The principal purpose of this article is to present a new method based on Adaptive Neural Network Fuzzy Inference System (ANFIS) to generate additional artificial earthquake accelerograms from presented data, which are compatible with specified response spectra. The proposed method uses the learning abilities of ANFIS to develop the knowledge of the inverse mapping from response spectrum to earthquake records. In addition, wavelet packet transform is used to decompose specified earthquake records and then ANFISs are trained to relate the response spectrum of records to their wavelet packet coefficients. Finally, an interpretive example is presented which uses an ensemble of recorded accelerograms to demonstrate the effectiveness of the proposed method.
Keywords: Adaptive Neural Network Fuzzy Inference System, Wavelet Packet Transform, Response Spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2832638 Adjustment of a PET Scanner for PEPT
Authors: Alireza Sadrmomtaz
Abstract:
Positron emission particle tracking (PEPT) is a technique in which a single radioactive tracer particle can be accurately tracked as it moves. A limitation of PET is that in order to reconstruct a tomographic image it is necessary to acquire a large volume of data (millions of events), so it is difficult to study rapidly changing systems. By considering this fact, PEPT is a very fast process compared with PET. In PEPT detecting both photons defines a line and the annihilation is assumed to have occurred somewhere along this line. The location of the tracer can be determined to within a few mm from coincident detection of a small number of pairs of back-to-back gamma rays and using triangulation. This can be achieved many times per second and the track of a moving particle can be reliably followed. This technique was invented at the University of Birmingham [1]. The attempt in PEPT is not to form an image of the tracer particle but simply to determine its location with time. If this tracer is followed for a long enough period within a closed, circulating system it explores all possible types of motion. The application of PEPT to industrial process systems carried out at the University of Birmingham is categorized in two subjects: the behaviour of granular materials and viscous fluids. Granular materials are processed in industry for example in the manufacture of pharmaceuticals, ceramics, food, polymers and PEPT has been used in a number of ways to study the behaviour of these systems [2]. PEPT allows the possibility of tracking a single particle within the bed [3]. Also PEPT has been used for studying systems such as: fluid flow, viscous fluids in mixers [4], using a neutrally-buoyant tracer particle [5].Keywords: PET, BGO, Particle Tracking, ECAT 931, List mode, PEPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403637 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition
Authors: D. Geringswald, B. Hintze
Abstract:
The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.Keywords: ALD, high aspect ratio, PE-MOCVD, TiN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507636 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.
Keywords: Neural networks, Noise, Speech Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936635 A New Method for Image Classification Based on Multi-level Neural Networks
Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed
Abstract:
In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648634 Legal Education as Forming Factor of Legal Culture in Kazakhstan Modern Society
Authors: M. Karassartova, D. Shormanbayeva, A. Beissenova, S.Balshikeyev
Abstract:
Forming a legal culture among citizens is a complicated and lengthy process, influencing all spheres of social life. It includes promoting justice, learning rights and duties, the introduction of juridical norms and knowledge, and also a process of developing a system of legal acts and constitutional norms. Currently, the evaluative and emotional influence of attempts to establish a legal culture among the citizens of Kazakhstan is limited by real legal practice. As a result, the values essential to a sound civil society are absent from the consciousness of the Kazakh people who are thus, in turn, not able to develop respect for these values. One of the disadvantages of the modern Kazakh educational system is a tendency to underrate the actual forces shaping the worldview of Kazakh youths. The mass-media, which are going through a personnel crisis, cannot provide society with the legal and political information necessary to form the sort of legal culture required for a true civil society.Keywords: Kazakhstan society, Legal education, legal culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941633 A Case Study on the Value of Corporate Social Responsibility Systems
Authors: José M. Brotons, Manuel E. Sansalvador
Abstract:
The relationship between Corporate Social Responsibility (CSR) and financial performance (FP) is a subject of great interest that has not yet been resolved. In this work, we have developed a new and original tool to measure this relation. The tool quantifies the value contributed to companies that are committed to CSR. The theoretical model used is the fuzzy discounted cash flow method. Two assumptions have been considered, the first, the company has implemented the IQNet SR10 certification, and the second, the company has not implemented that certification. For the first one, the growth rate used for the time horizon is the rate maintained by the company after obtaining the IQNet SR10 certificate. For the second one, both, the growth rates company prior to the implementation of the certification, and the evolution of the sector will be taken into account. By using triangular fuzzy numbers, it is possible to deal adequately with each company’s forecasts as well as the information corresponding to the sector. Once the annual growth rate of the sales is obtained, the profit and loss accounts are generated from the annual estimate sales. For the remaining elements of this account, their regression with the nets sales has been considered. The difference between these two valuations, made in a fuzzy environment, allows obtaining the value of the IQNet SR10 certification. Although this study presents an innovative methodology to quantify the relation between CSR and FP, the authors are aware that only one company has been analyzed. This is precisely the main limitation of this study which in turn opens up an interesting line for future research: to broaden the sample of companies.
Keywords: Corporate social responsibility, case study, financial performance, company valuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789632 Discovery and Capture of Organizational Knowledge from Unstructured Information
Authors: J. Gu, W.B. Lee, C.F. Cheung, E. Tsui, W.M. Wang
Abstract:
Knowledge of an organization does not merely reside in structured form of information and data; it is also embedded in unstructured form. The discovery of such knowledge is particularly difficult as the characteristic is dynamic, scattered, massive and multiplying at high speed. Conventional methods of managing unstructured information are considered too resource demanding and time consuming to cope with the rapid information growth. In this paper, a Multi-faceted and Automatic Knowledge Elicitation System (MAKES) is introduced for the purpose of discovery and capture of organizational knowledge. A trial implementation has been conducted in a public organization to achieve the objective of decision capture and navigation from a number of meeting minutes which are autonomously organized, classified and presented in a multi-faceted taxonomy map in both document and content level. Key concepts such as critical decision made, key knowledge workers, knowledge flow and the relationship among them are elicited and displayed in predefined knowledge model and maps. Hence, the structured knowledge can be retained, shared and reused. Conducting Knowledge Management with MAKES reduces work in searching and retrieving the target decision, saves a great deal of time and manpower, and also enables an organization to keep pace with the knowledge life cycle. This is particularly important when the amount of unstructured information and data grows extremely quickly. This system approach of knowledge management can accelerate value extraction and creation cycles of organizations.Keywords: Knowledge-Based System, Knowledge Elicitation, Knowledge Management, Taxonomy, Unstructured Information Management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841631 One-Class Support Vector Machines for Protein-Protein Interactions Prediction
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.Keywords: Bioinformatics, Protein-protein interactions, One-Class Support Vector Machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989630 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller
Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini
Abstract:
Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.
Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3163629 Mindfulness and Employability: A Course on the Control of Stress during the Search for Work
Authors: O. Lasaga
Abstract:
Defining professional objectives and the search for work are some of the greatest stress factors for final year university students and recent graduates. To manage correctly the stress brought about by the uncertainty, confusion and frustration this process often generates, a course to control stress based on mindfulness has been designed and taught. This course provides tools based on relaxation, mindfulness and meditation that enable students to address personal and professional challenges in the transition to the job market, eliminating or easing the anxiety involved. The course is extremely practical and experiential, combining theory classes and practical classes of relaxation, meditation and mindfulness, group dynamics, reflection, application protocols and session integration. The evaluation of the courses highlighted on the one hand the high degree of satisfaction and, on the other, the usefulness for the students in becoming aware of stressful situations and how these affect them and learning new coping techniques that enable them to reach their goals more easily and with greater satisfaction and well-being.
Keywords: Employability, meditation, mindfulness, relaxation techniques, stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910