Search results for: cognitive radio networks
2021 Analyzing The Effect of Variable Round Time for Clustering Approach in Wireless Sensor Networks
Authors: Vipin Pal, Girdhari Singh, R P Yadav
Abstract:
As wireless sensor networks are energy constraint networks so energy efficiency of sensor nodes is the main design issue. Clustering of nodes is an energy efficient approach. It prolongs the lifetime of wireless sensor networks by avoiding long distance communication. Clustering algorithms operate in rounds. Performance of clustering algorithm depends upon the round time. A large round time consumes more energy of cluster heads while a small round time causes frequent re-clustering. So existing clustering algorithms apply a trade off to round time and calculate it from the initial parameters of networks. But it is not appropriate to use initial parameters based round time value throughout the network lifetime because wireless sensor networks are dynamic in nature (nodes can be added to the network or some nodes go out of energy). In this paper a variable round time approach is proposed that calculates round time depending upon the number of active nodes remaining in the field. The proposed approach makes the clustering algorithm adaptive to network dynamics. For simulation the approach is implemented with LEACH in NS-2 and the results show that there is 6% increase in network lifetime, 7% increase in 50% node death time and 5% improvement over the data units gathered at the base station.Keywords: Wireless Sensor Network, Clustering, Energy Efficiency, Round Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17942020 An Organizational Strategic Analysis for Dynamics of Generating Firms- Alliance Networks
Authors: Takao Sakakura, Kazunori Fujimoto
Abstract:
This paper proposes an analytical method for the dynamics of generating firms- alliance networks along with business phases. Dynamics in network developments have previously been discussed in the research areas of organizational strategy rather than in the areas of regional cluster, where the static properties of the networks are often discussed. The analytical method introduces the concept of business phases into innovation processes and uses relationships called prior experiences; this idea was developed in organizational strategy to investigate the state of networks from the viewpoints of tradeoffs between link stabilization and node exploration. This paper also discusses the results of the analytical method using five cases of the network developments of firms. The idea of Embeddedness helps interpret the backgrounds of the analytical results. The analytical method is useful for policymakers of regional clusters to establish concrete evaluation targets and a viewpoint for comparisons of policy programs.Keywords: Regional Clusters, Alliance Networks, Innovation Processes, Prior Experiences, Embeddedness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12802019 An Analysis of Global Stability of Cohen-Grossberg Neural Networks with Multiple Time Delays
Authors: Zeynep Orman, Sabri Arik
Abstract:
This paper presents a new sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for Cohen-Grossberg neural networks with multiple time delays. The results establish a relationship between the network parameters of the neural system independently of the delay parameters. The results are also compared with the previously reported results in the literature.Keywords: Equilibrium and stability analysis, Cohen-Grossberg Neural Networks, Lyapunov Functionals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13902018 A Review of Coverage and Routing for Wireless Sensor Networks
Authors: Hamid Barati, Ali Movaghar, Ali Barati, Arash Azizi Mazreah
Abstract:
The special constraints of sensor networks impose a number of technical challenges for employing them. In this review, we study the issues and existing protocols in three areas: coverage and routing. We present two types of coverage problems: to determine the minimum number of sensor nodes that need to perform active sensing in order to monitor a certain area; and to decide the quality of service that can be provided by a given sensor network. While most routing protocols in sensor networks are data-centric, there are other types of routing protocols as well, such as hierarchical, location-based, and QoS-aware. We describe and compare several protocols in each group. We present several multipath routing protocols and single-path with local repair routing protocols, which are proposed for recovering from sensor node crashes. We also discuss some transport layer schemes for reliable data transmission in lossy wireless channels.Keywords: Sensor networks, Coverage, Routing, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16892017 Secure Internet Connectivity for Dynamic Source Routing (DSR) based Mobile Ad hoc Networks
Authors: Ramanarayana Kandikattu, Lillykutty Jacob
Abstract:
'Secure routing in Mobile Ad hoc networks' and 'Internet connectivity to Mobile Ad hoc networks' have been dealt separately in the past research. This paper proposes a light weight solution for secure routing in integrated Mobile Ad hoc Network (MANET)-Internet. The proposed framework ensures mutual authentication of Mobile Node (MN), Foreign Agent (FA) and Home Agent (HA) to avoid various attacks on global connectivity and employs light weight hop-by-hop authentication and end-to-end integrity to protect the network from most of the potential security attacks. The framework also uses dynamic security monitoring mechanism to monitor the misbehavior of internal nodes. Security and performance analysis show that our proposed framework achieves good security while keeping the overhead and latency minimal.Keywords: Internet, Mobile Ad hoc Networks, Secure routing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14342016 pth Moment Exponential Synchronization of a Class of Chaotic Neural Networks with Mixed Delays
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
This paper studies the pth moment exponential synchronization of a class of stochastic neural networks with mixed delays. Based on Lyapunov stability theory, by establishing a new integrodifferential inequality with mixed delays, several sufficient conditions have been derived to ensure the pth moment exponential stability for the error system. The criteria extend and improve some earlier results. One numerical example is presented to illustrate the validity of the main results.
Keywords: pth Moment Exponential synchronization, Stochastic, Neural networks, Mixed time delays
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15902015 Face Recognition Using Morphological Shared-weight Neural Networks
Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani
Abstract:
We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15292014 Alertness States Classification By SOM and LVQ Neural Networks
Authors: K. Ben Khalifa, M.H. Bédoui, M. Dogui, F. Alexandre
Abstract:
Several studies have been carried out, using various techniques, including neural networks, to discriminate vigilance states in humans from electroencephalographic (EEG) signals, but we are still far from results satisfactorily useable results. The work presented in this paper aims at improving this status with regards to 2 aspects. Firstly, we introduce an original procedure made of the association of two neural networks, a self organizing map (SOM) and a learning vector quantization (LVQ), that allows to automatically detect artefacted states and to separate the different levels of vigilance which is a major breakthrough in the field of vigilance. Lastly and more importantly, our study has been oriented toward real-worked situation and the resulting model can be easily implemented as a wearable device. It benefits from restricted computational and memory requirements and data access is very limited in time. Furthermore, some ongoing works demonstrate that this work should shortly results in the design and conception of a non invasive electronic wearable device.Keywords: Electroencephalogram interpretation, artificialneural networks, vigilance states, hardware implementation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14832013 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9152012 Blind Identification Channel Using Higher Order Cumulants with Application to Equalization for MC−CDMA System
Authors: Mohammed Zidane, Said Safi, Mohamed Sabri, Ahmed Boumezzough
Abstract:
In this paper we propose an algorithm based on higher order cumulants, for blind impulse response identification of frequency radio channels and downlink (MC−CDMA) system Equalization. In order to test its efficiency, we have compared with another algorithm proposed in the literature, for that we considered on theoretical channel as the Proakis’s ‘B’ channel and practical frequency selective fading channel, called Broadband Radio Access Network (BRAN C), normalized for (MC−CDMA) systems, excited by non-Gaussian sequences. In the part of (MC−CDMA), we use the Minimum Mean Square Error (MMSE) equalizer after the channel identification to correct the channel’s distortion. The simulation results, in noisy environment and for different signal to noise ratio (SNR), are presented to illustrate the accuracy of the proposed algorithm.
Keywords: Blind identification and equalization, Higher Order Cumulants, (MC−CDMA) system, MMSE equalizer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17872011 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics
Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris
Abstract:
The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.
Keywords: Cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16492010 Concepts for Designing Low Power Wireless Sensor Network
Authors: Bahareh Gholamzadeh, Hooman Nabovati
Abstract:
Wireless sensor networks have been used in wide areas of application and become an attractive area for researchers in recent years. Because of the limited energy storage capability of sensor nodes, Energy consumption is one of the most challenging aspects of these networks and different strategies and protocols deals with this area. This paper presents general methods for designing low power wireless sensor network. Different sources of energy consumptions in these networks are discussed here and techniques for alleviating the consumption of energy are presented.Keywords: Energy consumption, MAC protocol, Routing protocol, Sensor node, Topology control, Wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21642009 The Effects of Visual Elements and Cognitive Styles on Students Learning in Hypermedia Environment
Authors: Rishi Ruttun
Abstract:
One of the major features of hypermedia learning is its non-linear structure, allowing learners, the opportunity of flexible navigation to accommodate their own needs. Nevertheless, such flexibility can also cause problems such as insufficient navigation and disorientation for some learners, especially those with Field Dependent cognitive styles. As a result students learning performance can be deteriorated and in turn, they can have negative attitudes with hypermedia learning systems. It was suggested that visual elements can be used to compensate dilemmas. However, it is unclear whether these visual elements improve their learning or whether problems still exist. The aim of this study is to investigate the effect of students cognitive styles and visual elements on students learning performance and attitudes in hypermedia learning environment. Cognitive Style Analysis (CSA), Learning outcome in terms of pre and post-test, practical task, and Attitude Questionnaire (AQ) were administered to a sample of 60 university students. The findings revealed that FD students preformed equally to those of FI. Also, FD students experienced more disorientation in the hypermedia learning system where they depend a lot on the visual elements for navigation and orientation purposes. Furthermore, they had more positive attitudes towards the visual elements which escape them from experiencing navigation and disorientation dilemmas. In contrast, FI students were more comfortable, did not get disturbed or did not need some of the visual elements in the hypermedia learning system.
Keywords: Hypermedia learning, cognitive styles, visual elements, support, learning performance, attitudes and perceptions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16852008 A Mobile Agent-based Clustering Data Fusion Algorithm in WSN
Authors: Xiangbin Zhu, Wenjuan Zhang
Abstract:
In wireless sensor networks,the mobile agent technology is used in data fusion. According to the node residual energy and the results of partial integration,we design the node clustering algorithm. Optimization of mobile agent in the routing within the cluster strategy for wireless sensor networks to further reduce the amount of data transfer. Through the experiments, using mobile agents in the integration process within the cluster can be reduced the path loss in some extent.
Keywords: wireless sensor networks, data fusion, mobile agent
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15182007 Energy Efficient Clustering and Data Aggregation in Wireless Sensor Networks
Authors: Surender Kumar Soni
Abstract:
Wireless Sensor Networks (WSNs) are wireless networks consisting of number of tiny, low cost and low power sensor nodes to monitor various physical phenomena like temperature, pressure, vibration, landslide detection, presence of any object, etc. The major limitation in these networks is the use of nonrechargeable battery having limited power supply. The main cause of energy consumption WSN is communication subsystem. This paper presents an efficient grid formation/clustering strategy known as Grid based level Clustering and Aggregation of Data (GCAD). The proposed clustering strategy is simple and scalable that uses low duty cycle approach to keep non-CH nodes into sleep mode thus reducing energy consumption. Simulation results demonstrate that our proposed GCAD protocol performs better in various performance metrics.Keywords: Ad hoc network, Cluster, Grid base clustering, Wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31432006 The Effectiveness of Cognitive Behavioural Intervention in Alleviating Social Avoidance for Blind Students
Authors: Mohamed M. Elsherbiny
Abstract:
Social Avoidance is one of the most important problems that face a good number of disabled students. It results from the negative attitudes of non-disabled students, teachers and others. Some of the past research has shown that non-disabled individuals hold negative attitudes toward persons with disabilities. The present study aims to alleviate Social Avoidance by applying the Cognitive Behavioral Intervention. 24 Blind students aged 19–24 (university students) were randomly chosen we compared an experimental group (consisted of 12 students) who went through the intervention program, with a control group (12 students also) who did not go through such intervention. We used the Social Avoidance and Distress Scale (SADS) to assess social anxiety and distress behavior. The author used many techniques of cognitive behavioral intervention such as modeling, cognitive restructuring, extension, contingency contracts, selfmonitoring, assertiveness training, role play, encouragement and others. Statistically, T-test was employed to test the research hypothesis. Result showed that there is a significance difference between the experimental group and the control group after the intervention and also at the follow up stages of the Social Avoidance and Distress Scale. Also for the experimental group, there is a significance difference before the intervention and the follow up stages for the scale. Results showed that, there is a decrease in social avoidance. Accordingly, cognitive behavioral intervention program was successful in decreasing social avoidance for blind students.Keywords: Social avoidance, cognitive behavioral intervention, blind disability, disability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20002005 A Materialized View Approach to Support Aggregation Operations over Long Periods in Sensor Networks
Authors: Minsoo Lee, Julee Choi, Sookyung Song
Abstract:
The increasing interest on processing data created by sensor networks has evolved into approaches to implement sensor networks as databases. The aggregation operator, which calculates a value from a large group of data such as computing averages or sums, etc. is an essential function that needs to be provided when implementing such sensor network databases. This work proposes to add the DURING clause into TinySQL to calculate values during a specific long period and suggests a way to implement the aggregation service in sensor networks by applying materialized view and incremental view maintenance techniques that is used in data warehouses. In sensor networks, data values are passed from child nodes to parent nodes and an aggregation value is computed at the root node. As such root nodes need to be memory efficient and low powered, it becomes a problem to recompute aggregate values from all past and current data. Therefore, applying incremental view maintenance techniques can reduce the memory consumption and support fast computation of aggregate values.Keywords: Aggregation, Incremental View Maintenance, Materialized view, Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15472004 e-Service Innovation within Open Innovation Networks
Authors: Hung T. Tsou, Hsuan Y. Hsu
Abstract:
Service innovations are central concerns in fast changing environment. Due to the fitness in customer demands and advances in information technologies (IT) in service management, an expanded conceptualization of e-service innovation is required. Specially, innovation practices have become increasingly more challenging, driving managers to employ a different open innovation model to maintain competitive advantages. At the same time, firms need to interact with external and internal customers in innovative environments, like the open innovation networks, to co-create values. Based on these issues, an important conceptual framework of e-service innovation is developed. This paper aims to examine the contributing factors on e-service innovation and firm performance, including financial and non-financial aspects. The study concludes by showing how e-service innovation will play a significant role in growing the overall values of the firm. The discussion and conclusion will lead to a stronger understanding of e-service innovation and co-creating values with customers within open innovation networks.Keywords: e-Service innovation, performance, open innovation networks, co-create value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21542003 Function Approximation with Radial Basis Function Neural Networks via FIR Filter
Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim
Abstract:
Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore , the number of centers will be considered since it affects the performance of approximation.
Keywords: Extended kalmin filter (EKF), classification problem, radial basis function networks (RBFN), finite impulse response (FIR)filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24062002 Cryptanalysis of Chang-Chang-s EC-PAKA Protocol for Wireless Mobile Networks
Authors: Hae-Soon Ahn, Eun-Jun Yoon
Abstract:
With the rapid development of wireless mobile communication, applications for mobile devices must focus on network security. In 2008, Chang-Chang proposed security improvements on the Lu et al.-s elliptic curve authentication key agreement protocol for wireless mobile networks. However, this paper shows that Chang- Chang-s improved protocol is still vulnerable to off-line password guessing attacks unlike their claims.
Keywords: Authentication, key agreement, wireless mobile networks, elliptic curve, password guessing attacks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15192001 Earnings-Related Information, Cognitive Bias, and the Disposition Effect
Authors: Chih-Hsiang Chang, Pei-Shan Kao
Abstract:
This paper discusses the reaction of investors in the Taiwan stock market to the most probable unknown earnings-related information and the most probable known earnings-related information. As compared with the previous literature regarding the effect of an official announcement of earnings forecast revision, this paper further analyzes investors’ cognitive bias toward the unknown and known earnings-related information, and the role of media during the investors' reactions to the foresaid information shocks. The empirical results show that both the unknown and known earnings-related information provides useful information content for a stock market. In addition, cognitive bias and disposition effect are the behavioral pitfalls that commonly occur in the process of the investors' reactions to the earnings-related information. Finally, media coverage has a remarkable influence upon the investors' trading decisions.Keywords: Cognitive bias, role of media, disposition effect, earnings-related information, behavioral pitfall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8802000 Microservices-Based Provisioning and Control of Network Services for Heterogeneous Networks
Authors: Shameemraj M. Nadaf, Sipra Behera, Hemant K. Rath, Garima Mishra, Raja Mukhopadhyay, Sumanta Patro
Abstract:
Microservices architecture has been widely embraced for rapid, frequent, and reliable delivery of complex applications. It enables organizations to evolve their technology stack in various domains. Today, the networking domain is flooded with plethora of devices and software solutions which address different functionalities ranging from elementary operations, viz., switching, routing, firewall etc., to complex analytics and insights based intelligent services. In this paper, we attempt to bring in the microservices based approach for agile and adaptive delivery of network services for any underlying networking technology. We discuss the life cycle management of each individual microservice and a distributed control approach with emphasis for dynamic provisioning, management, and orchestration in an automated fashion which can provide seamless operations in large scale networks. We have conducted validations of the system in lab testbed comprising of Traditional/Legacy and Software Defined Wireless Local Area networks.
Keywords: Microservices architecture, software defined wireless networks, traditional wireless networks, automation, orchestration, intelligent networks, network analytics, seamless management, single pane control, fine-grain control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9221999 Accelerating Integer Neural Networks On Low Cost DSPs
Authors: Thomas Behan, Zaiyi Liao, Lian Zhao, Chunting Yang
Abstract:
In this paper, low end Digital Signal Processors (DSPs) are applied to accelerate integer neural networks. The use of DSPs to accelerate neural networks has been a topic of study for some time, and has demonstrated significant performance improvements. Recently, work has been done on integer only neural networks, which greatly reduces hardware requirements, and thus allows for cheaper hardware implementation. DSPs with Arithmetic Logic Units (ALUs) that support floating or fixed point arithmetic are generally more expensive than their integer only counterparts due to increased circuit complexity. However if the need for floating or fixed point math operation can be removed, then simpler, lower cost DSPs can be used. To achieve this, an integer only neural network is created in this paper, which is then accelerated by using DSP instructions to improve performance.Keywords: Digital Signal Processor (DSP), Integer Neural Network(INN), Low Cost Neural Network, Integer Neural Network DSPImplementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18041998 Improved Exponential Stability Analysis for Delayed Recurrent Neural Networks
Authors: Miaomiao Yang, Shouming Zhong
Abstract:
This paper studies the problem of exponential stability analysis for recurrent neural networks with time-varying delay.By establishing a suitable augmented LyapunovCKrasovskii function and a novel sufficient condition is obtained to guarantee the exponential stability of the considered system.In order to get a less conservative results of the condition,zero equalities and reciprocally convex approach are employed. The several exponential stability criterion proposed in this paper is simpler and effective. A numerical example is provided to demonstrate the feasibility and effectiveness of our results.
Keywords: Exponential stability , Neural networks, Linear matrix inequality, Lyapunov-Krasovskii, Time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17791997 An Adversarial Construction of Instability Bounds in LIS Networks
Authors: Dimitrios Koukopoulos
Abstract:
In this work, we study the impact of dynamically changing link slowdowns on the stability properties of packetswitched networks under the Adversarial Queueing Theory framework. Especially, we consider the Adversarial, Quasi-Static Slowdown Queueing Theory model, where each link slowdown may take on values in the two-valued set of integers {1, D} with D > 1 which remain fixed for a long time, under a (w, ¤ü)-adversary. In this framework, we present an innovative systematic construction for the estimation of adversarial injection rate lower bounds, which, if exceeded, cause instability in networks that use the LIS (Longest-in- System) protocol for contention-resolution. In addition, we show that a network that uses the LIS protocol for contention-resolution may result in dropping its instability bound at injection rates ¤ü > 0 when the network size and the high slowdown D take large values. This is the best ever known instability lower bound for LIS networks.Keywords: Network stability, quality of service, adversarial queueing theory, greedy scheduling protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12351996 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network
Authors: Siavash Asadi Ghajarloo
Abstract:
Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21791995 Knowledge Management in Cross- Organizational Networks as Illustrated by One of the Largest European ICT Associations A Case Study of the “METORA
Authors: Thomas Klauß
Abstract:
In networks, mainly small and medium-sized businesses benefit from the knowledge, experiences and solutions offered by experts from industry and science or from the exchange with practitioners. Associations which focus, among other things, on networking, information and knowledge transfer and which are interested in supporting such cooperations are especially well suited to provide such networks and the appropriate web platforms. Using METORA as an example – a project developed and run by the Federal Association for Information Economy, Telecommunications and New Media e.V. (BITKOM) for the Federal Ministry of Economics and Technology (BMWi) – This paper will discuss how associations and other network organizations can achieve this task and what conditions they have to consider.
Keywords: Associations, collaboration, communities, crossdepartmental organizations, semantic web, web 2.0.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13061994 Denoising by Spatial Domain Averaging for Wireless Local Area Network Terminal Localization
Authors: Diego Felix, Eugene Hyun, Michael McGuire, Mihai Sima
Abstract:
Terminal localization for indoor Wireless Local Area Networks (WLANs) is critical for the deployment of location-aware computing inside of buildings. A major challenge is obtaining high localization accuracy in presence of fluctuations of the received signal strength (RSS) measurements caused by multipath fading. This paper focuses on reducing the effect of the distance-varying noise by spatial filtering of the measured RSS. Two different survey point geometries are tested with the noise reduction technique: survey points arranged in sets of clusters and survey points uniformly distributed over the network area. The results show that the location accuracy improves by 16% when the filter is used and by 18% when the filter is applied to a clustered survey set as opposed to a straight-line survey set. The estimated locations are within 2 m of the true location, which indicates that clustering the survey points provides better localization accuracy due to superior noise removal.Keywords: Position measurement, Wireless LAN, Radio navigation, Filtering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15311993 Enhancing the Connectedness in Ad–hoc Mesh Networks using the Terranet Technology
Authors: Obeidat I., Bsoul M., Khasawneh A., Kilani Y.
Abstract:
This paper simulates the ad-hoc mesh network in rural areas, where such networks receive great attention due to their cost, since installing the infrastructure for regular networks in these areas is not possible due to the high cost. The distance between the communicating nodes is the most obstacles that the ad-hoc mesh network will face. For example, in Terranet technology, two nodes can communicate if they are only one kilometer far from each other. However, if the distance between them is more than one kilometer, then each node in the ad-hoc mesh networks has to act as a router that forwards the data it receives to other nodes. In this paper, we try to find the critical number of nodes which makes the network fully connected in a particular area, and then propose a method to enhance the intermediate node to accept to be a router to forward the data from the sender to the receiver. Much work was done on technological changes on peer to peer networks, but the focus of this paper will be on another feature which is to find the minimum number of nodes needed for a particular area to be fully connected and then to enhance the users to switch on their phones and accept to work as a router for other nodes. Our method raises the successful calls to 81.5% out of 100% attempt calls.
Keywords: Adjacency matrix, Ad-hoc mesh network, Connectedness, Terranet technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16251992 Improved Robust Stability Criteria for Discrete-time Neural Networks
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
In this paper, the robust exponential stability problem of uncertain discrete-time recurrent neural networks with timevarying delay is investigated. By constructing a new augmented Lyapunov-Krasovskii function, some new improved stability criteria are obtained in forms of linear matrix inequality (LMI). Compared with some recent results in literature, the conservatism of the new criteria is reduced notably. Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
Keywords: Robust exponential stability, delay-dependent stability, discrete-time neutral networks, time-varying delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489