Search results for: Support.
1492 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions
Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi
Abstract:
This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.
Keywords: Beam on nonlinear Winkler foundation method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12111491 Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools
Authors: Yogesh Aggarwal
Abstract:
The paper discusses the results obtained to predict reinforcement in singly reinforced beam using Neural Net (NN), Support Vector Machines (SVM-s) and Tree Based Models. Major advantage of SVM-s over NN is of minimizing a bound on the generalization error of model rather than minimizing a bound on mean square error over the data set as done in NN. Tree Based approach divides the problem into a small number of sub problems to reach at a conclusion. Number of data was created for different parameters of beam to calculate the reinforcement using limit state method for creation of models and validation. The results from this study suggest a remarkably good performance of tree based and SVM-s models. Further, this study found that these two techniques work well and even better than Neural Network methods. A comparison of predicted values with actual values suggests a very good correlation coefficient with all four techniques.Keywords: Linear Regression, M5 Model Tree, Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20331490 Automatic Rearrangement of Localized Graphical User Interface
Authors: Ágoston Winkler, Sándor Juhász
Abstract:
The localization of software products is essential for reaching the users of the international market. An important task for this is the translation of the user interface into local national languages. As graphical interfaces are usually optimized for the size of the texts in the original language, after the translation certain user controls (e.g. text labels and buttons in dialogs) may grow in such a manner that they slip above each other. This not only causes an unpleasant appearance but also makes the use of the program more difficult (or even impossible) which implies that the arrangement of the controls must be corrected subsequently. The correction should preserve the original structure of the interface (e.g. the relation of logically coherent controls), furthermore, it is important to keep the nicely proportioned design: the formation of large empty areas should be avoided. This paper describes an algorithm that automatically rearranges the controls of a graphical user interface based on the principles above. The algorithm has been implemented and integrated into a translation support system and reached results pleasant for the human eye in most test cases.Keywords: Graphical user interface, GUI, natural languages, software localization, translation support systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16831489 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children
Authors: Norah Alshahrani, Abdulaziz Almaleh
Abstract:
Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD: Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by SVM, achieving 0.98% in the toddler dataset and 0.99% in the children dataset.
Keywords: Autism Spectrum Disorder, ASD, Machine Learning, ML, Feature Selection, Support Vector Machine, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5951488 On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region
Authors: T. Penkova, A. Korobko, V. Nicheporchuk., L. Nozhenkova, A. Metus
Abstract:
This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.Keywords: Decision making support systems, Emergency risk assessment, Natural and anthropogenic safety, On-line control, Territory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18901487 A Decision Matrix for the Evaluation of Triplestores for Use in a Virtual Research Environment
Authors: Tristan O’Neill, Trina Myers, Jarrod Trevathan
Abstract:
The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for cross-domain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.
Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17031486 Analysis of Sequence Moves in Successful Chess Openings Using Data Mining with Association Rules
Authors: R.M.Rani
Abstract:
Chess is one of the indoor games, which improves the level of human confidence, concentration, planning skills and knowledge. The main objective of this paper is to help the chess players to improve their chess openings using data mining techniques. Budding Chess Players usually do practices by analyzing various existing openings. When they analyze and correlate thousands of openings it becomes tedious and complex for them. The work done in this paper is to analyze the best lines of Blackmar- Diemer Gambit(BDG) which opens with White D4... using data mining analysis. It is carried out on the collection of winning games by applying association rules. The first step of this analysis is assigning variables to each different sequence moves. In the second step, the sequence association rules were generated to calculate support and confidence factor which help us to find the best subsequence chess moves that may lead to winning position.Keywords: Blackmar-Diemer Gambit(BDG), Confidence, sequence Association Rules, Support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30901485 A Small-Scale Knowledge Management System for a Service-Oriented Department
Authors: Eliza Mazmee Mazlan, K.S. Savita, Amir Hamzah Zalfakhar
Abstract:
This paper demonstrates an effort of a serviceoriented engineering department in improving the sharing and transfer of knowledge. Although the department consist of only six employees, but it provides services in various chemical application in an oil and gas business. The services provided span across Asia Pacific region mainly Indonesia, Myanmar, Vietnam, Brunei, Thailand and Singapore. Currently there are no effective tools or integrated systems that support the sharing or transfer and maintenance of knowledge so the department has considered preserving this valuable knowledge by developing a Knowledge Management System (KMS). This paper presents the development of a KMS to support the sharing of knowledge in a service-oriented engineering department of an oil and gas company. The embedded features in the KMS like blog and forum will encourage iterative process of knowledge sharing among the employees in the department. The information and knowledge being shared, discussed and communicated will be then achieved for future re-use. The re-use of the knowledge allows the department to reduce redundant efforts in providing consistent, up-to-date and cost effective of the best solution to the its clients.Keywords: Knowledge management, knowledge managementsystem, knowledge barrier, knowledge sharing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14621484 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach
Authors: D. Tedesco, G. Feletti, P. Trucco
Abstract:
The present study aims to develop a Decision Support System (DSS) to support operational decisions in Emergency Medical Service (EMS) systems regarding the assignment of medical emergency requests to Emergency Departments (ED). This problem is called “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of a first phase of review of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a mission. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the travelling time and to free-up the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs also considering the expected time performance in the subsequent phases of the process, such as the case mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to compare different hospital selection policies. The model was implemented with the AnyLogic software and finally validated on a realistic case. The hospital selection policy that returned the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, based on a retrospective estimation of the TTP, and a dynamic approach, focused on a predictive estimation of the TTP which is determined with a constantly updated Winters forecasting model. Findings reveal that considering the minimization of TTP is the best hospital selection policy. It allows to significantly reducing service throughput times in the ED with a negligible increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms on TTP estimation, than a retrospective approach. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.
Keywords: Emergency medical services, hospital selection, discrete event simulation, forecast model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321483 Working with Children and Young People as a much Neglected Area of Education within the Social Studies Curriculum in Poland
Authors: Marta Czechowska-Bieluga
Abstract:
Social work education in Poland focuses mostly on developing competencies that address the needs of individuals and families affected by a variety of life's problems. As a result of the ageing of the Polish population, much attention is equally devoted to adults, including the elderly. However, social work with children and young people is the area of education which should be given more consideration. Social work students are mostly trained to cater to the needs of families and the competencies aimed to respond to the needs of children and young people do not receive enough attention and are only offered as elective classes. This paper strives to review the social work programmes offered by the selected higher education institutions in Poland in terms of social work training aimed at helping children and young people to address their life problems. The analysis conducted in this study indicates that university education for social work focuses on training professionals who will provide assistance only to adults. Due to changes in the social and political situation, including, in particular, changes in social policy implemented for the needy, it is necessary to extend this area of education to include the specificity of the support for children and young people; especially, in the light of the appearance of new support professions within the area of social work. For example, family assistants, whose task is to support parents in performing their roles as guardians and educators, also assist children. Therefore, it becomes necessary to equip social work professionals with competencies which include issues related to the quality of life of underage people living in families. Social work curricula should be extended to include the issues of child and young person development and the patterns governing this phase of life.
Keywords: Social work education, social work programmes, social worker, university.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6481482 Factors Influencing Knowledge Management Process Model: A Case Study of Manufacturing Industry in Thailand
Authors: Daranee Pimchangthong, Supaporn Tinprapa
Abstract:
The objectives of this research were to explore factors influencing knowledge management process in the manufacturing industry and develop a model to support knowledge management processes. The studied factors were technology infrastructure, human resource, knowledge sharing, and the culture of the organization. The knowledge management processes included discovery, capture, sharing, and application. Data were collected through questionnaires and analyzed using multiple linear regression and multiple correlation. The results found that technology infrastructure, human resource, knowledge sharing, and culture of the organization influenced the discovery and capture processes. However, knowledge sharing had no influence in sharing and application processes. A model to support knowledge management processes was developed, which indicated that sharing knowledge needed further improvement in the organization.Keywords: knowledge management, knowledge management process, tacit knowledge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18571481 Use of Bayesian Network in Information Extraction from Unstructured Data Sources
Authors: Quratulain N. Rajput, Sajjad Haider
Abstract:
This paper applies Bayesian Networks to support information extraction from unstructured, ungrammatical, and incoherent data sources for semantic annotation. A tool has been developed that combines ontologies, machine learning, and information extraction and probabilistic reasoning techniques to support the extraction process. Data acquisition is performed with the aid of knowledge specified in the form of ontology. Due to the variable size of information available on different data sources, it is often the case that the extracted data contains missing values for certain variables of interest. It is desirable in such situations to predict the missing values. The methodology, presented in this paper, first learns a Bayesian network from the training data and then uses it to predict missing data and to resolve conflicts. Experiments have been conducted to analyze the performance of the presented methodology. The results look promising as the methodology achieves high degree of precision and recall for information extraction and reasonably good accuracy for predicting missing values.Keywords: Information Extraction, Bayesian Network, ontology, Machine Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22301480 Jointly Learning Python Programming and Analytic Geometry
Authors: Cristina-Maria Păcurar
Abstract:
The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.Keywords: Analytic geometry, conics, Python programming language, quadrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15821479 Improving Health Care and Patient Safety at the ICU by Using Innovative Medical Devices and ICT Tools: Examples from Bangladesh
Authors: Mannan Mridha, Mohammad S. Islam
Abstract:
Innovative medical technologies offer more effective medical care, with less risk to patient and healthcare personnel. Medical technology and devices when properly used provide better data, precise monitoring and less invasive treatments and can be more targeted and often less costly. The Intensive Care Unit (ICU) equipped with patient monitoring, respiratory and cardiac support, pain management, emergency resuscitation and life support devices is particularly prone to medical errors for various reasons. Many people in the developing countries now wonder whether their visit to hospital might harm rather than help them. This is because; clinicians in the developing countries are required to maintain an increasing workload with limited resources and absence of well-functioning safety system. A team of experts from the medical, biomedical and clinical engineering in Sweden and Bangladesh have worked together to study the incidents, adverse events at the ICU in Bangladesh. The study included both public and private hospitals to provide a better understanding for physical structure, organization and practice in operating processes of care, and the occurrence of adverse outcomes the errors, risks and accidents related to medical devices at the ICU, and to develop a ICT based support system in order to reduce hazards and errors and thus improve the quality of performance, care and cost effectiveness at the ICU. Concrete recommendations and guidelines have been made for preparing appropriate ICT related tools and methods for improving the routine for use of medical devices, reporting and analyzing of the incidents at the ICU in order to reduce the number of undetected and unsolved incidents and thus improve the patient safety.
Keywords: Accidents reporting system, patient car and safety, safe medical devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8151478 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement
Authors: Maatoug Hassine, Mourad Hrizi
Abstract:
In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.Keywords: Geometric inverse source problem, heat equation, topological sensitivity, topological optimization, Kohn-Vogelius formulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11181477 A Framework to Support Reuse in Object-Oriented Software Development
Authors: Fathi Taibi
Abstract:
Reusability is a quality desired attribute in software products. Generally, it could be achieved through adopting development methods that promote it and achieving software qualities that have been linked with high reusability proneness. With the exponential growth in mobile application development, software reuse became an integral part in a substantial number of projects. Similarly, software reuse has become widely practiced in start-up companies. However, this has led to new emerging problems. Firstly, the reused code does not meet the required quality and secondly, the reuse intentions are dubious. This work aims to propose a framework to support reuse in Object-Oriented (OO) software development. The framework comprises a process that uses a proposed reusability assessment metric and a formal foundation to specify the elements of the reused code and the relationships between them. The framework is empirically evaluated using a wide range of open-source projects and mobile applications. The results are analyzed to help understand the reusability proneness of OO software and the possible means to improve it.
Keywords: Software reusability, software metrics, object-oriented software, modularity, low complexity, understandability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3771476 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections
Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam
Abstract:
Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.
Keywords: Natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30161475 Students’ Perceptions of the Use of Social Media in Higher Education in Saudi Arabia
Authors: Omar Alshehri, Vic Lally
Abstract:
This paper examined the attitudes of using social media tools to support learning at a university in Saudi Arabia. Moreover, it investigated the students’ current usage of these tools and examined the barriers they could face during the use of social media tools in the education process. Participants in this study were 42 university students. A web-based survey was used to collect data for this study. The results indicate that all of the students were familiar with social media and had used at least one type of social media for learning. It was found out that all students had very positive attitudes towards the use of social media and welcomed using these tools as a supplementary to the curriculum. However, the results indicated that the major barriers to using these tools in learning were distraction, opposing Islamic religious teachings, privacy issues, and cyberbullying. The study recommended that this study could be replicated at other Saudi universities to investigate factors and barriers that might affect Saudi students’ attitudes toward using social media to support learning.Keywords: Saudi Arabia, social media, benefits of social media use, barriers to social media use, higher education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23471474 The SAFRS System : A Case-Based Reasoning Training Tool for Capturing and Re-Using Knowledge
Authors: Souad Demigha
Abstract:
The paper aims to specify and build a system, a learning support in radiology-senology (breast radiology) dedicated to help assist junior radiologists-senologists in their radiologysenology- related activity based on experience of expert radiologistssenologists. This system is named SAFRS (i.e. system supporting the training of radiologists-senologists). It is based on the exploitation of radiologic-senologic images (primarily mammograms but also echographic images or MRI) and their related clinical files. The aim of such a system is to help breast cancer screening in education. In order to acquire this expert radiologist-senologist knowledge, we have used the CBR (case-based reasoning) approach. The SAFRS system will promote the evolution of teaching in radiology-senology by offering the “junior radiologist" trainees an advanced pedagogical product. It will permit a strengthening of knowledge together with a very elaborate presentation of results. At last, the know-how will derive from all these factors.
Keywords: Learning support, radiology-senology, training, education, CBR, accumulated experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16681473 Development of NOx Emission Model for a Tangentially Fired Acid Incinerator
Authors: Elangeshwaran Pathmanathan, Rosdiazli Ibrahim, Vijanth Sagayan Asirvadam
Abstract:
This paper aims to develop a NOx emission model of an acid gas incinerator using Nelder-Mead least squares support vector regression (LS-SVR). Malaysia DOE is actively imposing the Clean Air Regulation to mandate the installation of analytical instrumentation known as Continuous Emission Monitoring System (CEMS) to report emission level online to DOE . As a hardware based analyzer, CEMS is expensive, maintenance intensive and often unreliable. Therefore, software predictive technique is often preferred and considered as a feasible alternative to replace the CEMS for regulatory compliance. The LS-SVR model is built based on the emissions from an acid gas incinerator that operates in a LNG Complex. Simulated Annealing (SA) is first used to determine the initial hyperparameters which are then further optimized based on the performance of the model using Nelder-Mead simplex algorithm. The LS-SVR model is shown to outperform a benchmark model based on backpropagation neural networks (BPNN) in both training and testing data.Keywords: artificial neural networks, industrial pollution, predictive algorithms, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19741472 Detecting Remote Protein Evolutionary Relationships via String Scoring Method
Authors: Nazar Zaki, Safaai Deris
Abstract:
The amount of the information being churned out by the field of biology has jumped manifold and now requires the extensive use of computer techniques for the management of this information. The predominance of biological information such as protein sequence similarity in the biological information sea is key information for detecting protein evolutionary relationship. Protein sequence similarity typically implies homology, which in turn may imply structural and functional similarities. In this work, we propose, a learning method for detecting remote protein homology. The proposed method uses a transformation that converts protein sequence into fixed-dimensional representative feature vectors. Each feature vector records the sensitivity of a protein sequence to a set of amino acids substrings generated from the protein sequences of interest. These features are then used in conjunction with support vector machines for the detection of the protein remote homology. The proposed method is tested and evaluated on two different benchmark protein datasets and it-s able to deliver improvements over most of the existing homology detection methods.
Keywords: Protein homology detection; support vectormachine; string kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13911471 Emotion Classification using Adaptive SVMs
Authors: P. Visutsak
Abstract:
The study of the interaction between humans and computers has been emerging during the last few years. This interaction will be more powerful if computers are able to perceive and respond to human nonverbal communication such as emotions. In this study, we present the image-based approach to emotion classification through lower facial expression. We employ a set of feature points in the lower face image according to the particular face model used and consider their motion across each emotive expression of images. The vector of displacements of all feature points input to the Adaptive Support Vector Machines (A-SVMs) classifier that classify it into seven basic emotions scheme, namely neutral, angry, disgust, fear, happy, sad and surprise. The system was tested on the Japanese Female Facial Expression (JAFFE) dataset of frontal view facial expressions [7]. Our experiments on emotion classification through lower facial expressions demonstrate the robustness of Adaptive SVM classifier and verify the high efficiency of our approach.Keywords: emotion classification, facial expression, adaptive support vector machines, facial expression classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22231470 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)
Abstract:
Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economic, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economic factors for site selection of landfill areas and using GIS for a decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/Turkey city, Güzelyurt district practice.Keywords: GIS, landfill, solid waste, spatial analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31751469 A Real Time Expert System for Decision Support in Nuclear Power Plants
Authors: Andressa dos Santos Nicolau, João P. da S.C Algusto, Claudio Márcio do N. A. Pereira, Roberto Schirru
Abstract:
In case of abnormal situations, the nuclear power plant (NPP) operators must follow written procedures to check the condition of the plant and to classify the type of emergency. In this paper, we proposed a Real Time Expert System in order to improve operator’s performance in case of transient or accident with reactor shutdown. The expert system’s knowledge is based on the sequence of events (SoE) of known accident and two emergency procedures of the Brazilian Pressurized Water Reactor (PWR) NPP and uses two kinds of knowledge representation: rule and logic trees. The results show that the system was able to classify the response of the automatic protection systems, as well as to evaluate the conditions of the plant, diagnosing the type of occurrence, recovery procedure to be followed, indicating the shutdown root cause, and classifying the emergency level.
Keywords: Emergence procedure, expert system, operator support, PWR nuclear power plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11361468 Human Action Recognition Based on Ridgelet Transform and SVM
Authors: A. Ouanane, A. Serir
Abstract:
In this paper, a novel algorithm based on Ridgelet Transform and support vector machine is proposed for human action recognition. The Ridgelet transform is a directional multi-resolution transform and it is more suitable for describing the human action by performing its directional information to form spatial features vectors. The dynamic transition between the spatial features is carried out using both the Principal Component Analysis and clustering algorithm K-means. First, the Principal Component Analysis is used to reduce the dimensionality of the obtained vectors. Then, the kmeans algorithm is then used to perform the obtained vectors to form the spatio-temporal pattern, called set-of-labels, according to given periodicity of human action. Finally, a Support Machine classifier is used to discriminate between the different human actions. Different tests are conducted on popular Datasets, such as Weizmann and KTH. The obtained results show that the proposed method provides more significant accuracy rate and it drives more robustness in very challenging situations such as lighting changes, scaling and dynamic environmentKeywords: Human action, Ridgelet Transform, PCA, K-means, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20681467 Identification of Arousal and Relaxation by using SVM-Based Fusion of PPG Features
Authors: Chi Jung Kim, Mincheol Whang, Eui Chul Lee
Abstract:
In this paper, we propose a new method to distinguish between arousal and relaxation states by using multiple features acquired from a photoplethysmogram (PPG) and support vector machine (SVM). To induce arousal and relaxation states in subjects, 2 kinds of sound stimuli are used, and their corresponding biosignals are obtained using the PPG sensor. Two features–pulse to pulse interval (PPI) and pulse amplitude (PA)–are extracted from acquired PPG data, and a nonlinear classification between arousal and relaxation is performed using SVM. This methodology has several advantages when compared with previous similar studies. Firstly, we extracted 2 separate features from PPG, i.e., PPI and PA. Secondly, in order to improve the classification accuracy, SVM-based nonlinear classification was performed. Thirdly, to solve classification problems caused by generalized features of whole subjects, we defined each threshold according to individual features. Experimental results showed that the average classification accuracy was 74.67%. Also, the proposed method showed the better identification performance than the single feature based methods. From this result, we confirmed that arousal and relaxation can be classified using SVM and PPG features.Keywords: Support Vector Machine, PPG, Emotion Recognition, Arousal, Relaxation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24831466 Sensitivity Parameter Analysis of Negative Moment Dynamic Load Allowance of Continuous T-Girder Bridge
Authors: Fan Yang, Ye-lu Wang, Yang Zhao
Abstract:
The dynamic load allowance, as an application result of the vehicle-bridge coupled vibration theory, is an important parameter for bridge design and evaluation. Based on the coupled vehicle-bridge vibration theory, the current work establishes a full girder model of a dynamic load allowance, selects a planar five-degree-of-freedom three-axis vehicle model, solves the coupled vehicle-bridge dynamic response using the APDL language in the spatial finite element program ANSYS, selects the pivot point 2 sections as the representative of the negative moment section, and analyzes the effects of parameters such as travel speed, unevenness, vehicle frequency, span diameter, span number and forced displacement of the support on the negative moment dynamic load allowance through orthogonal tests. The influence of parameters such as vehicle speed, unevenness, vehicle frequency, span diameter, span number, and forced displacement of the support on the negative moment dynamic load allowance is analyzed by orthogonal tests, and the influence law of each influencing parameter is summarized. It is found that the effects of vehicle frequency, unevenness, and speed on the negative moment dynamic load allowance are significant, among which vehicle frequency has the greatest effect on the negative moment dynamic load allowance; the effects of span number and span diameter on the negative moment dynamic load allowance are relatively small; the effects of forced displacement of the support on the negative moment dynamic load allowance are negligible.
Keywords: Continuous T-girder bridge, dynamic load allowance, sensitivity analysis, vehicle-bridge coupling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3591465 Modelling of Designing a Conceptual Schema for Multimodal Freight Transportation Information System
Authors: Gia Surguladze, Lily Petriashvili, Nino Topuria, Giorgi Surguladze
Abstract:
Modelling of building processes of a multimodal freight transportation support information system is discussed based on modern CASE technologies. Functional efficiencies of ports in the eastern part of the Black Sea are analyzed taking into account their ecological, seasonal, resource usage parameters. By resources, we mean capacities of berths, cranes, automotive transport, as well as work crews and neighbouring airports. For the purpose of designing database of computer support system for Managerial (Logistics) function, using Object-Role Modeling (ORM) tool (NORMA–Natural ORM Architecture) is proposed, after which Entity Relationship Model (ERM) is generated in automated process. Software is developed based on Process-Oriented and Service-Oriented architecture, in Visual Studio.NET environment.Keywords: Seaport resources, business-processes, multimodal transportation, CASE technology, object-role model, entity relationship model, SOA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19911464 Methods of Geodesic Distance in Two-Dimensional Face Recognition
Authors: Rachid Ahdid, Said Safi, Bouzid Manaut
Abstract:
In this paper, we present a comparative study of three methods of 2D face recognition system such as: Iso-Geodesic Curves (IGC), Geodesic Distance (GD) and Geodesic-Intensity Histogram (GIH). These approaches are based on computing of geodesic distance between points of facial surface and between facial curves. In this study we represented the image at gray level as a 2D surface in a 3D space, with the third coordinate proportional to the intensity values of pixels. In the classifying step, we use: Neural Networks (NN), K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). The images used in our experiments are from two wellknown databases of face images ORL and YaleB. ORL data base was used to evaluate the performance of methods under conditions where the pose and sample size are varied, and the database YaleB was used to examine the performance of the systems when the facial expressions and lighting are varied.
Keywords: 2D face recognition, Geodesic distance, Iso-Geodesic Curves, Geodesic-Intensity Histogram, facial surface, Neural Networks, K-Nearest Neighbor, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18131463 Feature Vector Fusion for Image Based Human Age Estimation
Authors: D. Karthikeyan, G. Balakrishnan
Abstract:
Human faces, as important visual signals, express a significant amount of nonverbal info for usage in human-to-human communication. Age, specifically, is more significant among these properties. Human age estimation using facial image analysis as an automated method which has numerous potential real‐world applications. In this paper, an automated age estimation framework is presented. Support Vector Regression (SVR) strategy is utilized to investigate age prediction. This paper depicts a feature extraction taking into account Gray Level Co-occurrence Matrix (GLCM), which can be utilized for robust face recognition framework. It applies GLCM operation to remove the face's features images and Active Appearance Models (AAMs) to assess the human age based on image. A fused feature technique and SVR with GA optimization are proposed to lessen the error in age estimation.
Keywords: Support vector regression, feature extraction, gray level co-occurrence matrix, active appearance models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313