Search results for: real time data.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12975

Search results for: real time data.

9645 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
9644 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach

Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal

Abstract:

In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.

Keywords: Electrical discharge machining, electrode, MRR, RSM, ANOVA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
9643 Effect of Shell Dimensions on Buckling Behavior and Entropy Generation of Thin Welded Shells

Authors: Sima Ziaee, Khosro Jafarpur

Abstract:

Among all mechanical joining processes, welding has been employed for its advantage in design flexibility, cost saving, reduced overall weight and enhanced structural performance. However, for structures made of relatively thin components, welding can introduce significant buckling distortion which causes loss of dimensional control, structural integrity and increased fabrication costs. Different parameters can affect buckling behavior of welded thin structures such as, heat input, welding sequence, dimension of structure. In this work, a 3-D thermo elastic-viscoplastic finite element analysis technique is applied to evaluate the effect of shell dimensions on buckling behavior and entropy generation of welded thin shells. Also, in the present work, the approximated longitudinal transient stresses which produced in each time step, is applied to the 3D-eigenvalue analysis to ratify predicted buckling time and corresponding eigenmode. Besides, the possibility of buckling prediction by entropy generation at each time is investigated and it is found that one can predict time of buckling with drawing entropy generation versus out of plane deformation. The results of finite element analysis show that the length, span and thickness of welded thin shells affect the number of local buckling, mode shape of global buckling and post-buckling behavior of welded thin shells.

Keywords: Buckling behavior, Elastic viscoplastic model, Entropy generation, Finite element method, Shell dimensions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
9642 Identifying the Barriers behind the Lack of Six Sigma Use in Libyan Manufacturing Companies

Authors: Osama Elgadi, Martin Birkett, Wai Ming Cheung

Abstract:

This paper investigates the barriers behind the underutilisation of six sigma in Libyan manufacturing companies (LMCs). A mixed-method methodology is proposed, starting by conducting interviews to collect qualitative data followed by the development of a questionnaire to obtain quantitative data. The focus of this paper is on discussing the findings of the interview stage and how these can be used to further develop the questionnaire stage. The interview results showed that only four key barriers were highlighted as being encountered by LMCs. With a difference in terms of their significance, these factors were identified, and placed in descending order according to their importance, namely: “Lack of top management commitment”, “Lack of training”, “Lack of knowledge about six sigma”, and “Culture effect”. The findings also showed that some barriers which, were found in previous studies of six sigma implementation were not considered as barriers to LMCs but can, in fact, be considered as success factors or enablers for six sigma adoption. These factors were identified as: “sufficiency of time and financial resources”; “customers unsatisfied”; “good communication between all departments in the company”; “we are certain about its results and benefits to our company and unhappy with the current quality system”. These results suggest that LMCs face fewer barriers to adopting six sigma than many well-established global companies operating in other countries and could take advantage of these successful factors by developing and implementing a six sigma framework to improve their product quality and competitiveness.

Keywords: Six sigma, barriers, Libyan manufacturing companies, interview.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
9641 Bioprocess Optimization Based On Relevance Vector Regression Models and Evolutionary Programming Technique

Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte

Abstract:

This paper proposes a bioprocess optimization procedure based on Relevance Vector Regression models and evolutionary programming technique. Relevance Vector Regression scheme allows developing a compact and stable data-based process model avoiding time-consuming modeling expenses. The model building and process optimization procedure could be done in a half-automated way and repeated after every new cultivation run. The proposed technique was tested in a simulated mammalian cell cultivation process. The obtained results are promising and could be attractive for optimization of industrial bioprocesses.

Keywords: Bioprocess optimization, Evolutionary programming, Relevance Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
9640 Electron-Impact Excitation of Kr 5s, 5p Levels

Authors: Alla A. Mityureva

Abstract:

The available data on the cross sections of electronimpact excitation of krypton 5s and 5p configuration levels out of the ground state are represented in convenient and compact form. The results are obtained by regression through all known published data related to this process.

Keywords: Cross section, electron excitation, krypton, regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
9639 Study of Sugarcane Bagasse Pretreatment with Sulfuric Acid as a Step of Cellulose Obtaining

Authors: Candido. R.G., Godoy, G.G., Gonçalves, A.R

Abstract:

To produce sugar and ethanol, sugarcane processing generates several agricultural residues, being straw and bagasse is considered as the main among them. And what to do with this residues has been subject of many studies and experiences in an industry that, in recent years, highlighted by the ability to transform waste into valuable products such as electric power. Cellulose is the main component of these materials. It is the most common organic polymer and represents about 1.5 x 1012 tons of total production of biomass per year and is considered an almost inexhaustible source of raw material. Pretreatment with mineral acids is one of the most widely used as stage of cellulose extraction from lignocellulosic materials for solubilizing most of the hemicellulose content. This study had as goal to find the best reaction time of sugarcane bagasse pretreatment with sulfuric acid in order to minimize the losses of cellulose concomitantly with the highest possible removal of hemicellulose and lignin. It was found that the best time for this reaction was 40 minutes, in which it was reached a loss of hemicelluloses around 70% and lignin and cellulose, around 15%. Over this time, it was verified that the cellulose loss increased and there was no loss of lignin and hemicellulose.

Keywords: cellulose, acid pretreatment, hemicellulose removal, sugarcane bagasse

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4926
9638 Optically Active Material Based on Bi2O3@Yb3+, Nd3+ with High Intensity of Upconversion Luminescence in the Red and Green Region

Authors: D. Artamonov, A. Tsibulnikova, I. Samusev, V. Bryukhanov, A. Kozhevnikov

Abstract:

The synthesis and luminescent properties of Yb2O3,Nd2O3@Bi2O3 complex with upconversion generation are discussed in this work. The obtained samples were measured in the visible region of the spectrum under excitation with a wavelength of 980 nm. The studies showed that the obtained complexes have a high degree of stability and intense luminescence in the wavelength range of 400-750 nm. Consideration of the time dependence of the intensity of the upconversion luminescence allowed us to conclude that the enhancement of the intensity occurs in the time interval from 5 to 30 min, followed by the appearance of a stationary mode.

Keywords: Lasers, luminescence, upconversion photonics, rare earth metals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173
9637 Hydraulic Conductivity Prediction of Cement Stabilized Pavement Base Incorporating Recycled Plastics and Recycled Aggregates

Authors: Md. Shams Razi Shopnil, Tanvir Imtiaz, Sabrina Mahjabin, Md. Sahadat Hossain

Abstract:

Saturated hydraulic conductivity is one of the most significant attributes of pavement base course. Determination of hydraulic conductivity is a routine procedure for regular aggregate base courses. However, in many cases, a cement-stabilized base course is used with compromised drainage ability. Traditional hydraulic conductivity testing procedure is a readily available option which leads to two consequential drawbacks, i.e., the time required for the specimen to be saturated and extruding the sample after completion of the laboratory test. To overcome these complications, this study aims at formulating an empirical approach to predicting hydraulic conductivity based on Unconfined Compressive Strength test results. To do so, this study comprises two separate experiments (Constant Head Permeability test and Unconfined Compressive Strength test) conducted concurrently on a specimen having the same physical credentials. Data obtained from the two experiments were then used to devise a correlation between hydraulic conductivity and unconfined compressive strength. This correlation in the form of a polynomial equation helps to predict the hydraulic conductivity of cement-treated pavement base course, bypassing the cumbrous process of traditional permeability and less commonly used horizontal permeability tests. The correlation was further corroborated by a different set of data, and it has been found that the derived polynomial equation is deemed to be a viable tool to predict hydraulic conductivity.

Keywords: Hydraulic conductivity, unconfined compressive strength, recycled plastics, recycled concrete aggregates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330
9636 Evaluation of Easy-to-Use Energy Building Design Tools for Solar Access Analysis in Urban Contexts: Comparison of Friendly Simulation Design Tools for Architectural Practice in the Early Design Stage

Authors: M. Iommi, G. Losco

Abstract:

Current building sector is focused on reduction of energy requirements, on renewable energy generation and on regeneration of existing urban areas. These targets need to be solved with a systemic approach, considering several aspects simultaneously such as climate conditions, lighting conditions, solar radiation, PV potential, etc. The solar access analysis is an already known method to analyze the solar potentials, but in current years, simulation tools have provided more effective opportunities to perform this type of analysis, in particular in the early design stage. Nowadays, the study of the solar access is related to the easiness of the use of simulation tools, in rapid and easy way, during the design process. This study presents a comparison of three simulation tools, from the point of view of the user, with the aim to highlight differences in the easy-to-use of these tools. Using a real urban context as case study, three tools; Ecotect, Townscope and Heliodon, are tested, performing models and simulations and examining the capabilities and output results of solar access analysis. The evaluation of the ease-to-use of these tools is based on some detected parameters and features, such as the types of simulation, requirements of input data, types of results, etc. As a result, a framework is provided in which features and capabilities of each tool are shown. This framework shows the differences among these tools about functions, features and capabilities. The aim of this study is to support users and to improve the integration of simulation tools for solar access with the design process.

Keywords: Solar access analysis, energy building design tools, urban planning, solar potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
9635 An Analysis of Global Stability of Cohen-Grossberg Neural Networks with Multiple Time Delays

Authors: Zeynep Orman, Sabri Arik

Abstract:

This paper presents a new sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for Cohen-Grossberg neural networks with multiple time delays. The results establish a relationship between the network parameters of the neural system independently of the delay parameters. The results are also compared with the previously reported results in the literature.

Keywords: Equilibrium and stability analysis, Cohen-Grossberg Neural Networks, Lyapunov Functionals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
9634 Eco-Connectivity: Sustainable Practices in Telecom Networks Using Big Data

Authors: Tharunika Sridhar

Abstract:

This paper addresses sustainable eco-connectivity within the telecommunications sector studying its importance to tackle the contemporary challenges and data regulation issues. The paper also investigates the role of Big Data and its integration in this context, specific to telecom industry. One of the major focus areas in this paper is studying and examining the pathways explored, that are state-of-the-art ecological infrastructure solutions and sector-led measures derived from expert analyses and reviews. Additionally, the paper analyses critical factors involving cost-effective route planning, and the development of green telecommunications infrastructure that adds qualitative reasoning to the research idea. Furthermore, the study discusses in detail a potential green roadmap towards sustainability by exploring green routing software, eco-friendly infrastructure and other eco-focused initiatives. The paper is also directed at the special linguistic needs of the telecommunications sector by focusing on targeted select range of telecom environment.

Keywords: Big Data, telecom, sustainable telecom sector, telecom networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84
9633 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: Energy production, meteorological data, irradiance decomposition, solar photovoltaic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
9632 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study

Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari

Abstract:

The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two wellknown scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a casestudy. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means, which allows simulating the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With this model is possible to obtain quite accurate and reliable results that allow identifying effective combinations building-HVAC system. The second step has consisted of using output data obtained as input to the calculation model, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing determining the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while our calculation model provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model for different design options.

Keywords: Energy, Buildings, Systems, Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2029
9631 Effect of Inertia on the Fractal Dimension of Particle Line in three-dimensional Turbulent Flows using Kinematic Simulation

Authors: A. Abou El-Azm Aly, F. Nicolleau, T. M. Michelitsch, A. F. Nowakowski

Abstract:

The dispersion of heavy particles line in an isotropic and incompressible three-dimensional turbulent flow has been studied using the Kinematic Simulation techniques to find out the evolution of the line fractal dimension. In this study, the fractal dimension of the line is found for different cases of heavy particles inertia (different Stokes numbers) in the absence of the particle gravity with a comparison with the fractal dimension obtained in the diffusion case of material line at the same Reynolds number. It can be concluded for the dispersion of heavy particles line in turbulent flow that the particle inertia affect the fractal dimension of a line released in a turbulent flow for Stokes numbers 0.02 < St < 2. At the beginning for small times, most of the different cases are not affected by the inertia until a certain time, the particle response time τa, with larger time as the particles inertia increases, the fractal dimension of the line increases owing to the particles becoming more sensitive to the small scales which cause the change in the line shape during its journey.

Keywords: Heavy particles, two-phase flow, Kinematic Simulation, Fractal dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
9630 Cloud Computing Cryptography "State-of-the-Art"

Authors: Omer K. Jasim, Safia Abbas, El-Sayed M. El-Horbaty, Abdel-Badeeh M. Salem

Abstract:

Cloud computing technology is very useful in present day to day life, it uses the internet and the central remote servers to provide and maintain data as well as applications. Such applications in turn can be used by the end users via the cloud communications without any installation. Moreover, the end users’ data files can be accessed and manipulated from any other computer using the internet services. Despite the flexibility of data and application accessing and usage that cloud computing environments provide, there are many questions still coming up on how to gain a trusted environment that protect data and applications in clouds from hackers and intruders. This paper surveys the “keys generation and management” mechanism and encryption/decryption algorithms used in cloud computing environments, we proposed new security architecture for cloud computing environment that considers the various security gaps as much as possible. A new cryptographic environment that implements quantum mechanics in order to gain more trusted with less computation cloud communications is given.

Keywords: Cloud Computing, Cloud Encryption Model, Quantum Key Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4094
9629 Enzymes Activity in Bovine Cervical Mucus Related to the Time of Ovulation And Insemination

Authors: S. Benbia, A.Kalla, M. Yahia, K. Belhadi, A. Zidani

Abstract:

Forty-five dairy cows were used to compare the enzyme activity of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), α -amylase in the cervical mucus of cows during spontaneous and induced estrus using progestagen or PGF2 α and to determine whether these enzymes affect the fertility in cows with induced estrus, at the time of Al. The animals were assigned to 3 groups (no treatment, a Crestar® for 12 days, a double im injection of PGF2 α). The cows were artificially inseminated (AI). Cervical mucus samples were collected from all cows 3 to 5 min before the AI. The results are summarized as follows: ALP and α -amylase activity for spontaneous estrus were similar to those for induced estrus (P>0.05) . LDH activity levels during spontaneous and PGF2 α induced estrus was significantly lower (P < 0.001) than that in progestagene induced estrus groups. While no difference was found between the first and the third groups. Our result showed a significant difference in LDH activity levels between cows conceived with 2 or more AI and those conceived with 1 AI. The result of this study showed that the enzyme activity in cervical mucus is helpful for detection of ovulation and time of AI.

Keywords: cervical mucus, dairy cow, enzyme, induced, estrus, ovulation, AI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
9628 X-ray Pulse Profiles of PSR J0538+2817

Authors: Kun Tao Zhao, Na Wang, Jian Ping Yuan

Abstract:

This paper reports our analysis of 163 ks observations of PSR J0538+2817 with the Rossi X-Ray Timing Explorer (RXTE).The pulse profiles, detected up to 60 keV, show a single peak asin the case for radio frequency. The profile is well described by one Gaussians function with full width at half maximum (FWHM) 0.04794. We compared the difference of arrival time between radio and X-ray pulse profiles for the first time. It turns out that the phase of radio emits precede the X-ray by 8.7 ± 4.5 ms. Furthermore we obtained the pulse profiles in the energy ranges of 2.29-6.18 keV, 6.18-12.63 keV and 12.63-17.36 keV. The intensity of pulses decreases with the increasing energy range. We discuss the emission geometry in our work.

Keywords: RXTE, X-ray pulsars, PSR J0538+2817.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
9627 Design of High Torque Elbow Joint for Above Elbow Prosthesis

Authors: Irfan Hussain, Adnan Masood, Javaid Iqbal, Umar S. Khan

Abstract:

Above Elbow Prosthesis is one of the most commonly amputated or missing limbs. The research is done for modelling techniques of upper limb prosthesis and design of high torque, light weight and compact in size elbow actuator. The purposed actuator consists of a DC motor, planetary gear set and a harmonic drive. The calculations show that the actuator is good enough to be used in real life powered prosthetic upper limb or rehabilitation exoskeleton.

Keywords: Above Elbow prosthesis, Harmonic drive, Planetarygear set, Sagittal Plane

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
9626 Deep iCrawl: An Intelligent Vision-Based Deep Web Crawler

Authors: R.Anita, V.Ganga Bharani, N.Nityanandam, Pradeep Kumar Sahoo

Abstract:

The explosive growth of World Wide Web has posed a challenging problem in extracting relevant data. Traditional web crawlers focus only on the surface web while the deep web keeps expanding behind the scene. Deep web pages are created dynamically as a result of queries posed to specific web databases. The structure of the deep web pages makes it impossible for traditional web crawlers to access deep web contents. This paper, Deep iCrawl, gives a novel and vision-based approach for extracting data from the deep web. Deep iCrawl splits the process into two phases. The first phase includes Query analysis and Query translation and the second covers vision-based extraction of data from the dynamically created deep web pages. There are several established approaches for the extraction of deep web pages but the proposed method aims at overcoming the inherent limitations of the former. This paper also aims at comparing the data items and presenting them in the required order.

Keywords: Crawler, Deep web, Web Database

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
9625 Searchable Encryption in Cloud Storage

Authors: Ren-Junn Hwang, Chung-Chien Lu, Jain-Shing Wu

Abstract:

Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.

Keywords: Fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3080
9624 Simulation of Lid Cavity Flow in Rectangular, Half-Circular and Beer Bucket Shapes using Quasi-Molecular Modeling

Authors: S. Kulsri, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

We developed a new method based on quasimolecular modeling to simulate the cavity flow in three cavity shapes: rectangular, half-circular and bucket beer in cgs units. Each quasi-molecule was a group of particles that interacted in a fashion entirely analogous to classical Newtonian molecular interactions. When a cavity flow was simulated, the instantaneous velocity vector fields were obtained by using an inverse distance weighted interpolation method. In all three cavity shapes, fluid motion was rotated counter-clockwise. The velocity vector fields of the three cavity shapes showed a primary vortex located near the upstream corners at time t ~ 0.500 s, t ~ 0.450 s and t ~ 0.350 s, respectively. The configurational kinetic energy of the cavities increased as time increased until the kinetic energy reached a maximum at time t ~ 0.02 s and, then, the kinetic energy decreased as time increased. The rectangular cavity system showed the lowest kinetic energy, while the half-circular cavity system showed the highest kinetic energy. The kinetic energy of rectangular, beer bucket and half-circular cavities fluctuated about stable average values 35.62 x 103, 38.04 x 103 and 40.80 x 103 ergs/particle, respectively. This indicated that the half-circular shapes were the most suitable shape for a shrimp pond because the water in shrimp pond flows best when we compared with rectangular and beer bucket shape.

Keywords: Quasi-molecular modelling, particle modelling, lid driven cavity flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
9623 Pre-Deflection Routing with Control Packet Signal Scheme in Optical Burst Switch Networks

Authors: Jaipal Bisht, Aditya Goel

Abstract:

Optical Burst Switching (OBS) is a promising technology for the future generation Internet. Control architecture and Contention resolution are the main issues faced by the Optical Burst Switching networks. In this paper we are only taking care of the Contention problem and to overcome this issue we propose Pre-Deflection Routing with Control Packet Signal Scheme for Contention Resolution in Optical Burst Switch Networks. In this paper Pre-deflection routing approach has been proposed in which routing is carried out in two ways, Shortest Path First (SPF) and Least Hop First (LHF) Routing to forward the clusters and canoes respectively. Hereafter Burst Offset Time Control Algorithm has been proposed where a forward control packet (FCP) collects the congestion price and contention price along its paths. Thereafter a reverse-direction control packet (RCP) sent by destination node which delivers the information of FCP to the source node, and source node uses this information to revise its offset time and burst length.

Keywords: Contention Resolution, FCP, OBS, Offset Time, PST, RCP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
9622 A Modified AES Based Algorithm for Image Encryption

Authors: M. Zeghid, M. Machhout, L. Khriji, A. Baganne, R. Tourki

Abstract:

With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. In this paper, we analyze the Advanced Encryption Standard (AES), and we add a key stream generator (A5/1, W7) to AES to ensure improving the encryption performance; mainly for images characterised by reduced entropy. The implementation of both techniques has been realized for experimental purposes. Detailed results in terms of security analysis and implementation are given. Comparative study with traditional encryption algorithms is shown the superiority of the modified algorithm.

Keywords: Cryptography, Encryption, Advanced EncryptionStandard (AES), ECB mode, statistical analysis, key streamgenerator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5058
9621 Extracting Road Signs using the Color Information

Authors: Wen-Yen Wu, Tsung-Cheng Hsieh, Ching-Sung Lai

Abstract:

In this paper, we propose a method to extract the road signs. Firstly, the grabbed image is converted into the HSV color space to detect the road signs. Secondly, the morphological operations are used to reduce noise. Finally, extract the road sign using the geometric property. The feature extraction of road sign is done by using the color information. The proposed method has been tested for the real situations. From the experimental results, it is seen that the proposed method can extract the road sign features effectively.

Keywords: Color information, image processing, road sign.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
9620 Zero Inflated Strict Arcsine Regression Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

Zero inflated strict arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, we extend zero inflated strict arcsine model to zero inflated strict arcsine regression model by taking into consideration the extra variability caused by extra zeros and covariates in count data. Maximum likelihood estimation method is used in estimating the parameters for this zero inflated strict arcsine regression model.

Keywords: Overdispersed count data, maximum likelihood estimation, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
9619 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis

Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan

Abstract:

Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.

Keywords: Carbon dioxide, emission modeling, light rail, microscopic model, traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
9618 Effect of the Experimental Conditions on the Adsorption Capacities in the Removal of Pb2+ from Aqueous Solutions by the Hydroxyapatite Nanopowders

Authors: Oral Lacin, Turan Calban, Fatih Sevim, Taner Celik

Abstract:

In this study, Pb2+ uptake by the hydroxyapatite nanopowders (n-Hap) from aqueous solutions was investigated by using batch adsorption techniques. The adsorption equilibrium studies were carried out as a function of contact time, adsorbent dosage, pH, temperature, and initial Pb2+ concentration. The results showed that the equilibrium time of adsorption was achieved within 60 min, and the effective pH was selected to be 5 (natural pH). The maximum adsorption capacity of Pb2+ on n-Hap was found as 565 mg.g-1. It is believed that the results obtained for adsorption may provide a background for the detailed mechanism investigations and the pilot and industrial scale applications.

Keywords: Nanopowders, hydroxyapatite, heavy metals, adsorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
9617 Exercise and Cognitive Function: Time Course of the Effects

Authors: Simon B. Cooper, Stephan Bandelow, Maria L. Nute, John G. Morris, Mary E. Nevill

Abstract:

Previous research has indicated a variable effect of exercise on adolescents’ cognitive function. However, comparisons between studies are difficult to make due to differences in: the mode, intensity and duration of exercise employed; the components of cognitive function measured (and the tests used to assess them); and the timing of the cognitive function tests in relation to the exercise. Therefore, the aim of the present study was to assess the time course (10 and 60min post-exercise) of the effects of 15min intermittent exercise on cognitive function in adolescents. 45 adolescents were recruited to participate in the study and completed two main trials (exercise and resting) in a counterbalanced crossover design. Participants completed 15min of intermittent exercise (in cycles of 1 min exercise, 30s rest). A battery of computer based cognitive function tests (Stroop test, Sternberg paradigm and visual search test) were completed 30 min pre- and 10 and 60min post-exercise (to assess attention, working memory and perception respectively).The findings of the present study indicate that on the baseline level of the Stroop test, 10min following exercise response times were slower than at any other time point on either trial (trial by session time interaction, p = 0.0308). However, this slowing of responses also tended to produce enhanced accuracy 10min post-exercise on the baseline level of the Stroop test (trial by session time interaction, p = 0.0780). Similarly, on the complex level of the visual search test there was a slowing of response times 10 min post-exercise (trial by session time interaction, p = 0.0199). However, this was not coupled with an improvement in accuracy (trial by session time interaction, p = 0.2349). The mid-morning bout of exercise did not affect response times or accuracy across the morning on the Sternberg paradigm. In conclusion, the findings of the present study suggest an equivocal effect of exercise on adolescents' cognitive function. The mid-morning bout of exercise appears to cause a speed-accuracy trade off immediately following exercise on the Stroop test (participants become slower but more accurate), whilst slowing response times on the visual search test and having no effect on performance on the Sternberg paradigm. Furthermore, this work highlights the importance of the timing of the cognitive function tests relative to the exercise and the components of cognitive function examined in future studies. 

Keywords: Adolescents, cognitive function, exercise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3137
9616 GA Based Optimal Feature Extraction Method for Functional Data Classification

Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai

Abstract:

Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.

Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555