Optically Active Material Based on Bi2O3@Yb3+, Nd3+ with High Intensity of Upconversion Luminescence in the Red and Green Region
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Optically Active Material Based on Bi2O3@Yb3+, Nd3+ with High Intensity of Upconversion Luminescence in the Red and Green Region

Authors: D. Artamonov, A. Tsibulnikova, I. Samusev, V. Bryukhanov, A. Kozhevnikov

Abstract:

The synthesis and luminescent properties of Yb2O3,Nd2O3@Bi2O3 complex with upconversion generation are discussed in this work. The obtained samples were measured in the visible region of the spectrum under excitation with a wavelength of 980 nm. The studies showed that the obtained complexes have a high degree of stability and intense luminescence in the wavelength range of 400-750 nm. Consideration of the time dependence of the intensity of the upconversion luminescence allowed us to conclude that the enhancement of the intensity occurs in the time interval from 5 to 30 min, followed by the appearance of a stationary mode.

Keywords: Lasers, luminescence, upconversion photonics, rare earth metals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206

References:


[1] Patil, A.S.; Patil, A. V.; Dighavkar, C.G.; Adole, V.A.; Tupe, U.J. Synthesis Techniques and Applications of Rare Earth Metal Oxides Semiconductors: A Review. Chem. Phys. Lett. 2022, 796, 139555, doi:10.1016/J.CPLETT.2022.139555.
[2] Furuse, H.; Yasuhara, R. Magneto-Optical Characteristics of Holmium Oxide (Ho_2O_3) Ceramics. Opt. Mater. Express 2017, 7, 827, doi:10.1364/ome.7.000827.
[3] Balaram, V. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact. Geosci. Front. 2019, 10, 1285–1303, doi:10.1016/j.gsf.2018.12.005.
[4] Hossain, M.K.; Rubel, M.H.K.; Akbar, M.A.; Ahmed, M.H.; Haque, N.; Rahman, M.F.; Hossain, J.; Hossain, K.M. A Review on Recent Applications and Future Prospects of Rare Earth Oxides in Corrosion and Thermal Barrier Coatings, Catalysts, Tribological, and Environmental Sectors. Ceram. Int. 2022, 48, 32588–32612, doi:https://doi.org/10.1016/j.ceramint.2022.07.220.
[5] Tan, Y.; Liao, W.; Zeng, S.; Jia, P.; Teng, Z.; Zhou, X.; Zhang, H. Microstructures, Thermophysical Properties and Corrosion Behaviours of Equiatomic Five-Component Rare-Earth Monosilicates. J. Alloys Compd. 2022, 907, 164334, doi: https://doi.org/10.1016/j.jallcom.2022.164334.
[6] Singh, A.K.; Kutty, T.R.G.; Sinha, S. Pulsed Laser Deposition of Corrosion Protective Yttrium Oxide (Y2O3) Coating. J. Nucl. Mater. 2012, 420, 374–381, doi:https://doi.org/10.1016/j.jnucmat.2011.10.028.
[7] Bahamirian, M.; Hadavi, S.M.M.; Farvizi, M.; Rahimipour, M.R.; Keyvani, A. Phase Stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 Compound at 1100 °C and 1300 °C for Advanced TBC Applications. Ceram. Int. 2019, 45, 7344–7350, doi: https://doi.org/10.1016/j.ceramint.2019.01.018.
[8] Jeon, H.; Lee, I.; Oh, Y. Changes in High-Temperature Thermal Properties of Modified YSZ with Various Rare Earth Doping Elements. Ceram. Int. 2022, 48, 8177–8185, doi: https://doi.org/10.1016/j.ceramint.2021.12.020.
[9] Adachi, G.Y.; Imanaka, N. The Binary Rare Earth Oxides. Chem. Rev. 1998, 98, 1479–1514, doi:10.1021/cr940055h.
[10] Novák, O.; Miura, T.; Smrž, M.; Chyla, M.; Nagisetty, S.S.; Mužík, J.; Linnemann, J.; Turčičová, H.; Jambunathan, V.; Slezák, O.; et al. Status of the High Average Power Diode-Pumped Solid State Laser Development at HiLASE. Appl. Sci. 2015, 5, 637–665, doi:10.3390/app5040637.
[11] Cheng, Y.-L.; Lee, C.-Y.; Huang, Y.-L.; Buckner, C.A.; Lafrenie, R.M.; Dénommée, J.A.; Caswell, J.M.; Want, D.A.; Gan, G.G.; Leong, Y.C.; et al. From the Laser Plume to the Laser Ceramics. Intech 2016, 11, 13.
[12] Zhang, Y.; Hu, S.; Tian, T.; Xiao, X.; Chen, Y.; Zhang, Y.; Xu, J. Growth and Spectral Properties of Er3+ and Yb3+ Co-Doped Bismuth Silicate Single Crystal. Crystals 2022, 12, 1532, doi:10.3390/cryst12111532.
[13] Gorbachenya, K.N.; Yasukevich, A.S.; Lazarchuk, A.I.; Kisel, V.E.; Kuleshov, N. V.; Volkova, E.A.; Maltsev, V. V.; Koporulina, E. V.; Yapaskurt, V.O.; Kuzmin, N.N.; et al. Growth and Spectroscopy of Yb:YMgB5O10 Crystal. Crystals 2022, 12, 1–11, doi:10.3390/cryst12070986.
[14] Piconi, C.; Maccauro, G. Zirconia as a Ceramic Biomaterial. Biomaterials 1999, 20, 1–25, doi:https://doi.org/10.1016/S0142-9612(98)00010-6.
[15] Moqbel, N.M.; Al-Akhali, M.; Wille, S.; Kern, M. Influence of Aging on Biaxial Flexural Strength and Hardness of Translucent 3Y-TZP. Materials (Basel). 2020, 13, 27, doi:10.3390/ma13010027.
[16] Kozlovskiy, A.L.; Seitbayev, A.S.; Borgekov, D.B.; Zdorovets, M. V. Study of the Structural, Optical and Strength Properties of Glass-like (1−x)ZnO–0.25Al2O3–0.25WO3–XBi2O3 Ceramics. Crystals 2022, 12, 1–14, doi:10.3390/cryst12111527.
[17] Yi, H.; Che, J.; Liang, G.; Liu, X. Effect of Rare Earth Elements on Stability and Sintering Resistance of Tetragonal Zirconia for Advanced Thermal Barrier Coatings. Crystals 2021, 11, doi:10.3390/cryst11030287.
[18] Secu, M.; Secu, C.E. Processing and Optical Properties of Eu-Doped Chloroborate Glass-Ceramic. Crystals 2020, 10, 1–12, doi:10.3390/cryst10121101.
[19] Cao, J.; Wondraczek, L.; Wang, Y.; Wang, L.; Li, J.; Xu, S.; Peng, M. Ultrabroadband Near-Infrared Photoemission from Bismuth-Centers in Nitridated Oxide Glasses and Optical Fiber. ACS Photonics 2018, 5, 4393–4401, doi:10.1021/acsphotonics.8b00814.
[20] Tcibulnikova, A. V.; Myslitskaya, N.A.; Slezhkin, V.A.; Bruykhanov, V. V.; Samusev, I.G.; Lyatun, I.I. Upconversion Luminescence Enhancement of the Ytterbium Oxide with Gold Nanoparticles on Anodized Titanium Surface. J. Lumin. 2022, 251, 119157, doi:10.1016/j.jlumin.2022.119157.