Search results for: life cycle data.
5656 Server Virtualization Using User Behavior Model Focus on Provisioning Concept
Authors: D. Prangchumpol
Abstract:
Server provisioning is one of the most attractive topics in virtualization systems. Virtualization is a method of running multiple independent virtual operating systems on a single physical computer. It is a way of maximizing physical resources to maximize the investment in hardware. Additionally, it can help to consolidate servers, improve hardware utilization and reduce the consumption of power and physical space in the data center. However, management of heterogeneous workloads, especially for resource utilization of the server, or so called provisioning becomes a challenge. In this paper, a new concept for managing workloads based on user behavior is presented. The experimental results show that user behaviors are different in each type of service workload and time. Understanding user behaviors may improve the efficiency of management in provisioning concept. This preliminary study may be an approach to improve management of data centers running heterogeneous workloads for provisioning in virtualization system.
Keywords: association rule, provisioning, server virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17295655 Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites
Authors: F. Abbas Pour Khotbehsara, B. Salehpour, A. Kianvash
Abstract:
Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties.Keywords: Gamma ray irradiation, Hard Ferrite, Magnetic coefficient, Radiation dose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26675654 Politic Iconography: The Sky and Pants of Nicolas-Antoine Taunay (1755-1830)
Authors: Bárbara Dantas
Abstract:
Nicolas-Antoine Taunay had everything to have a quiet life with his family, his colleagues from the Paris Academy of Art, and as a renowned painter of the French Court, but the conjuncture was quite complicated in those final years of the eighteenth century and first decades of the 19th century. The painter had to adapt to various political and social ruptures: from royalty to the French Revolution, from the empire of Napoleon Bonaparte to the empire of King John VI. We wish to insert Taunay in its context through the analysis of his portrait made by a colleague of the profession and of a Brazilian landscape painted of his own (1816-1821) and, in which he represented himself. Finally, the intention is to find in these two paintings how Nicolas-Antoine Taunay faced himself and in the middle that surrounded him in the traffic that was forced to make it between Paris and Rio de Janeiro.
Keywords: Nicolas-Antoine Taunay, politic iconography, French Art, Brazilian Art, 19th century.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2605653 The Harada Method – A Method for Employee Development during Production Ramp Up
Authors: M. Goerke, J. Gehrmann
Abstract:
Caused by shorter product life cycles and higher product variety the importance of production ramp ups is increasing. Even though companies are aware of that fact, up to 40% of the ramp up projects still miss technical and economical requirements. The success of a ramp up depends on the planning of human factors, organizational aspects and technological solutions. Since only partly considered in scientific literature, this paper lays its focus on the human factor during production ramp up. There are only incoherent methods which address the problems in this area. A systematic and holistic method to improve the capabilities of the employees during ramp up is missing. The Harada Method is a relatively young approach for developing highly-skilled workers. It consists of different worksheets which help employees to set guidelines and reach overall objectives. This approach is going to be transferred into a tool for ramp up management.
Keywords: Employee Development, Harada, Production Ramp Up.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22835652 Prediction the Deformation in Upsetting Process by Neural Network and Finite Element
Authors: H.Mohammadi Majd, M.Jalali Azizpour , Foad Saadi
Abstract:
In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting processKeywords: Back-propagation artificial neural network(BPANN), prediction, upsetting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15595651 CoP-Networks: Virtual Spaces for New Faculty’s Professional Development in the 21st Higher Education
Authors: Eman AbuKhousa, Marwan Z. Bataineh
Abstract:
The 21st century higher education and globalization challenge new faculty members to build effective professional networks and partnership with industry in order to accelerate their growth and success. This creates the need for community of practice (CoP)-oriented development approaches that focus on cognitive apprenticeship while considering individual predisposition and future career needs. This work adopts data mining, clustering analysis, and social networking technologies to present the CoP-Network as a virtual space that connects together similar career-aspiration individuals who are socially influenced to join and engage in a process for domain-related knowledge and practice acquisitions. The CoP-Network model can be integrated into higher education to extend traditional graduate and professional development programs.Keywords: Clustering analysis, community of practice, data mining, higher education, new faculty challenges, social networks, social influence, professional development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9825650 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling
Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte
Abstract:
This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.Keywords: Thermocline, modelling, heat exchange, spiral, shell, tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9315649 A Context-Aware Supplier Selection Model
Authors: Mohammadreza Razzazi, Maryam Bayat
Abstract:
Selection of the best possible set of suppliers has a significant impact on the overall profitability and success of any business. For this reason, it is usually necessary to optimize all business processes and to make use of cost-effective alternatives for additional savings. This paper proposes a new efficient context-aware supplier selection model that takes into account possible changes of the environment while significantly reducing selection costs. The proposed model is based on data clustering techniques while inspiring certain principles of online algorithms for an optimally selection of suppliers. Unlike common selection models which re-run the selection algorithm from the scratch-line for any decision-making sub-period on the whole environment, our model considers the changes only and superimposes it to the previously defined best set of suppliers to obtain a new best set of suppliers. Therefore, any recomputation of unchanged elements of the environment is avoided and selection costs are consequently reduced significantly. A numerical evaluation confirms applicability of this model and proves that it is a more optimal solution compared with common static selection models in this field.Keywords: Supplier Selection, Context-Awareness, OnlineAlgorithms, Data Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18275648 Determination of the Bank's Customer Risk Profile: Data Mining Applications
Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge
Abstract:
In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.
Keywords: Client classification, loan suitability, risk rating, CART analysis, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10815647 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine
Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph
Abstract:
In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even-dough decreases at these extreme wind speeds but are not infinite. Moreover, we also fund that it is possible to stabilize the power coefficient (stabilizing the output power)above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.Keywords: Probability, Stochastic, Probability density function, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17525646 A Framework for Product Development Process including HW and SW Components
Authors: Namchul Do, Gyeongseok Chae
Abstract:
This paper proposes a framework for product development including hardware and software components. It provides separation of hardware dependent software, modifications of current product development process, and integration of software modules with existing product configuration models and assembly product structures. In order to decide the dependent software, the framework considers product configuration modules and engineering changes of associated software and hardware components. In order to support efficient integration of the two different hardware and software development, a modified product development process is proposed. The process integrates the dependent software development into product development through the interchanges of specific product information. By using existing product data models in Product Data Management (PDM), the framework represents software as modules for product configurations and software parts for product structure. The framework is applied to development of a robot system in order to show its effectiveness.Keywords: HW and SW Development Integration, ProductDevelopment with Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26135645 Off-Line Hand Written Thai Character Recognition using Ant-Miner Algorithm
Authors: P. Phokharatkul, K. Sankhuangaw, S. Somkuarnpanit, S. Phaiboon, C. Kimpan
Abstract:
Much research into handwritten Thai character recognition have been proposed, such as comparing heads of characters, Fuzzy logic and structure trees, etc. This paper presents a system of handwritten Thai character recognition, which is based on the Ant-minor algorithm (data mining based on Ant colony optimization). Zoning is initially used to determine each character. Then three distinct features (also called attributes) of each character in each zone are extracted. The attributes are Head zone, End point, and Feature code. All attributes are used for construct the classification rules by an Ant-miner algorithm in order to classify 112 Thai characters. For this experiment, the Ant-miner algorithm is adapted, with a small change to increase the recognition rate. The result of this experiment is a 97% recognition rate of the training set (11200 characters) and 82.7% recognition rate of unseen data test (22400 characters).Keywords: Hand written, Thai character recognition, Ant-mineralgorithm, distinct feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19385644 Preliminary Roadway Alignment Design: A Spatial-Data Optimization Approach
Authors: Y. Abdelrazig, R. Moses
Abstract:
Roadway planning and design is a very complex process involving five key phases before a project is completed; planning, project development, final design, right-of-way, and construction. The planning phase for a new roadway transportation project is a very critical phase as it greatly affects all latter phases of the project. A location study is usually performed during the preliminary planning phase in a new roadway project. The objective of the location study is to develop alignment alternatives that are cost efficient considering land acquisition and construction costs. This paper describes a methodology to develop optimal preliminary roadway alignments utilizing spatial-data. Four optimization criteria are taken into consideration; roadway length, land cost, land slope, and environmental impacts. The basic concept of the methodology is to convert the proposed project area into a grid, which represents the search space for an optimal alignment. The aforementioned optimization criteria are represented in each of the grid’s cells. A spatial-data optimization technique is utilized to find the optimal alignment in the search space based on the four optimization criteria. Two case studies for new roadway projects in Duval County in the State of Florida are presented to illustrate the methodology. The optimization output alignments are compared to the proposed Florida Department of Transportation (FDOT) alignments. The comparison is based on right-of-way costs for the alignments. For both case studies, the right-of-way costs for the developed optimal alignments were found to be significantly lower than the FDOT alignments.Keywords: Optimization, planning, roadway alignment, FDOT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20425643 An Interlacing Technique-Based Blind Video Watermarking Using Wavelet
Authors: B. Sridhar, C. Arun
Abstract:
The rapid growth of multimedia technology demands the secure and efficient access to information. This fast growing lose the confidence of unauthorized duplication. Henceforth the protection of multimedia content is becoming more important. Watermarking solves the issue of unlawful copy of advanced data. In this paper, blind video watermarking technique has been proposed. A luminance layer of selected frames is interlaced into two even and odd rows of an image, further it is deinterlaced and equalizes the coefficients of the two shares. Color watermark is split into different blocks, and the pieces of block are concealed in one of the share under the wavelet transform. Stack the two images into a single image by introducing interlaced even and odd rows in the two shares. Finally, chrominance bands are concatenated with the watermarked luminance band. The safeguard level of the secret information is high, and it is undetectable. Results show that the quality of the video is not changed also yields the better PSNR values.
Keywords: Authentication, data security, deinterlaced, wavelet transform, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24795642 Exploring the Landscape of Information Visualization through a Mark Lombardi Lens
Authors: Alon Friedman, Antonio Sánchez Chinchón
Abstract:
This bibliometric study takes an artistic and storytelling approach to explore the term ”Information visualization.” Analyzing over 1008 titles collected from databases that specialize in data visualization research, we examine the titles of these publications to report on the characteristics and development trends in the field. Employing a qualitative methodology, we delve into the titles of these publications, extracting leading terms and exploring the co-occurrence of these terms to gain deeper insights. By systematically analyzing the leading terms and their relationships within the titles, we shed light on the prevailing themes that shape the landscape of ”Information visualization” by employing the artist Mark Lombardi’s techniques to visualize our findings. By doing so, this study provides valuable insights into bibliometrics visualization while also opening new avenues for leveraging art and storytelling to enhance data representation.
Keywords: Bibliometrics analysis, Mark Lombardi design, information visualization, qualitative methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295641 OPEN_EmoRec_II- A Multimodal Corpus of Human-Computer Interaction
Authors: Stefanie Rukavina, Sascha Gruss, Steffen Walter, Holger Hoffmann, Harald C. Traue
Abstract:
OPEN_EmoRec_II is an open multimodal corpus with experimentally induced emotions. In the first half of the experiment, emotions were induced with standardized picture material and in the second half during a human-computer interaction (HCI), realized with a wizard-of-oz design. The induced emotions are based on the dimensional theory of emotions (valence, arousal and dominance). These emotional sequences - recorded with multimodal data (facial reactions, speech, audio and physiological reactions) during a naturalistic-like HCI-environment one can improve classification methods on a multimodal level. This database is the result of an HCI-experiment, for which 30 subjects in total agreed to a publication of their data including the video material for research purposes*. The now available open corpus contains sensory signal of: video, audio, physiology (SCL, respiration, BVP, EMG Corrugator supercilii, EMG Zygomaticus Major) and facial reactions annotations.Keywords: Open multimodal emotion corpus, annotated labels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18275640 OPEN_EmoRec_II- A Multimodal Corpus of Human-Computer Interaction
Authors: Stefanie Rukavina, Sascha Gruss, Steffen Walter, Holger Hoffmann, Harald C. Traue
Abstract:
OPEN_EmoRec_II is an open multimodal corpus with experimentally induced emotions. In the first half of the experiment, emotions were induced with standardized picture material and in the second half during a human-computer interaction (HCI), realized with a wizard-of-oz design. The induced emotions are based on the dimensional theory of emotions (valence, arousal and dominance). These emotional sequences - recorded with multimodal data (facial reactions, speech, audio and physiological reactions) during a naturalistic-like HCI-environment one can improve classification methods on a multimodal level. This database is the result of an HCI-experiment, for which 30 subjects in total agreed to a publication of their data including the video material for research purposes*. The now available open corpus contains sensory signal of: video, audio, physiology (SCL, respiration, BVP, EMG Corrugator supercilii, EMG Zygomaticus Major) and facial reactions annotations.Keywords: Open multimodal emotion corpus, annotated labels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3975639 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: D. Hişam, S. İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three ML models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest (RF) Classifier was the most accurate model.
Keywords: Vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845638 A Novel Reversible Watermarking Method based on Adaptive Thresholding and Companding Technique
Authors: Nisar Ahmed Memon
Abstract:
Embedding and extraction of a secret information as well as the restoration of the original un-watermarked image is highly desirable in sensitive applications like military, medical, and law enforcement imaging. This paper presents a novel reversible data-hiding method for digital images using integer to integer wavelet transform and companding technique which can embed and recover the secret information as well as can restore the image to its pristine state. The novel method takes advantage of block based watermarking and iterative optimization of threshold for companding which avoids histogram pre and post-processing. Consequently, it reduces the associated overhead usually required in most of the reversible watermarking techniques. As a result, it keeps the distortion small between the marked and the original images. Experimental results show that the proposed method outperforms the existing reversible data hiding schemes reported in the literature.Keywords: Adaptive Thresholding, Companding Technique, Integer Wavelet Transform, Reversible Watermarking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18755637 Premarital Sex, HIV, and Use of Condom among Youths in Nigeria
Authors: Okechukwu Odinaka Ajaegbu
Abstract:
In the recent past, discussing about sex among children and youths was frowned at by traditional norms and as such sexual discussions and behavior were approached with great respect. Things are actually falling apart with the increasing number of young people that engage in premarital sex. Due to lack of experience and sex education, many young people are becoming increasingly exposed to the risk of HIV infection. In the light of the above, this study discussed premarital sex, HIV, and use of condom among youths in Nigeria. Data for this study came from 2013 Nigeria Demographic and Health Survey and other secondary data. The survey revealed that only 18.5 percent of young women that had sex in the 12 months preceding the survey used condom. Out of 3306 never-married sexually active men and women, 1728 representing 52 percent live in urban areas and 43 percent of them did not use condom during sexual intercourse in the 12 months preceding the survey. This study concludes that for there to be reduction in prevalence of HIV/AIDS among Nigerian youths, there is need for concerted effort to be made towards educating youths on the expedient of the use of condom during sexual intercourse.Keywords: Condom, HIV, Nigeria, Premarital sex, Youths.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24995636 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques
Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel
Abstract:
Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.
Keywords: Cross-language analysis, machine learning, machine translation, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16735635 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.
Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835634 The Impact of Rehabilitation Approaches in the Sustainability of the Management of Small Tanks in Sri Lanka
Authors: N.K.K. Welgama, W.A.D.P. Wanigasundera
Abstract:
Small tanks, the ancient man-made rain water storage systems, support the pheasant life and agriculture of the dry zone of Sri Lanka. Many small tanks were abandoned with time due to various reasons. Such tanks, rehabilitated in the recent past, were found to be less sustainable and most of these rehabilitation approaches have failed. The objective of this research is to assess the impact of the rehabilitation approaches in the management of small tanks in the Kurunegala District of Sri Lanka with respect to eight small tanks. A Sustainability index was developed using seven indicators representing the ability and commitment of the villagers to maintain these tanks. The sustainability index of the eight tanks varied between 79.2 and 47.2 out of a total score of 100. The conclusion is that, the approaches used for tank rehabilitation have a significant effect on the sustainability of the management of these small tanks.Keywords: Minor irrigation schemes, Participatory, Small Tanks, Sustainable, Water resource management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17945633 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.
Keywords: Dissolved oxygen, Water quality, predication DO, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22215632 Multi-Objective Optimization of an Aerodynamic Feeding System Using Genetic Algorithm
Authors: Jan Busch, Peter Nyhuis
Abstract:
Considering the challenges of short product life cycles and growing variant diversity, cost minimization and manufacturing flexibility increasingly gain importance to maintain a competitive edge in today’s global and dynamic markets. In this context, an aerodynamic part feeding system for high-speed industrial assembly applications has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. The aerodynamic part feeding system outperforms conventional systems with respect to its process safety, reliability, and operating speed. In this paper, a multi-objective optimisation of the aerodynamic feeding system regarding the orientation rate, the feeding velocity, and the required nozzle pressure is presented.Keywords: Aerodynamic feeding system, genetic algorithm, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16775631 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6115630 Dynamic Response of a Water Tower Composed of Interlocked Panels
Authors: F. Gurkalo, K. Poutos
Abstract:
Earthquakes produce some of the most violent loading situations that a structure can be subjected to and if a structure fails under these loads then inevitably human life is put at risk. One of the most common methods by which a structure fails under seismic loading is at the connection of structural elements. The research presented in this paper investigates the interlock systems as a novel method for building structures. The main objective of this experimental study wasto determine the dynamic characteristics and the seismic behaviour of the proposed structures compared to conventional structural systemsduring seismic motions. Results of this study indicate that the interlock mechanism of the panels influences the behaviour of lateral load-resisting systems of the structures during earthquakes, contributing to better structural flexibility and easier maintenance.Keywords: Watertower, earthquake, seismic, interlocked panels
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20545629 Education in the Constitutions: The Comparison of Turkey with Indonesia, France, Japan, South Africa, and the United States of America
Authors: Mehmet Durnali
Abstract:
The main purpose of this study is to find out, analyze and discuss basic principles of education and training in the constitutions, including the latest amendment, of France, Indonesia, Japan, South Africa, the United States of America, and Turkey. This research specifically aims at establishing a framework in order to compare educational values such as right of education, responsibilities of states and those of people, and other issues pertaining to education in the Constitution of Turkey to others. Additionally, it emphasizes the meaning of education in constitution, the reasons for references to education in constitutions and why it is important for people, states or nations and state organs. Qualitative analysis technique is performed to accomplish the aim of this study. Maximum variation sampling is used. The main data source of the analysis is official organic laws of those countries. The data is examined by using descriptive and content analysis method.
Keywords: Education in the constitution, education law, legal principles of education, right to education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16045628 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: [email protected]
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.
Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4255627 Analysis of the EEG Signal for a Practical Biometric System
Authors: Muhammad Kamil Abdullah, Khazaimatol S Subari, Justin Leo Cheang Loong, Nurul Nadia Ahmad
Abstract:
This paper discusses the effectiveness of the EEG signal for human identification using four or less of channels of two different types of EEG recordings. Studies have shown that the EEG signal has biometric potential because signal varies from person to person and impossible to replicate and steal. Data were collected from 10 male subjects while resting with eyes open and eyes closed in 5 separate sessions conducted over a course of two weeks. Features were extracted using the wavelet packet decomposition and analyzed to obtain the feature vectors. Subsequently, the neural networks algorithm was used to classify the feature vectors. Results show that, whether or not the subjects- eyes were open are insignificant for a 4– channel biometrics system with a classification rate of 81%. However, for a 2–channel system, the P4 channel should not be included if data is acquired with the subjects- eyes open. It was observed that for 2– channel system using only the C3 and C4 channels, a classification rate of 71% was achieved.Keywords: Biometric, EEG, Wavelet Packet Decomposition, NeuralNetworks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3041